These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 26283116)

  • 1. Tightening and Untying the Knot in Human Carbonic Anhydrase III.
    Dzubiella J
    J Phys Chem Lett; 2013 Jun; 4(11):1829-33. PubMed ID: 26283116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanically tightening a protein slipknot into a trefoil knot.
    He C; Lamour G; Xiao A; Gsponer J; Li H
    J Am Chem Soc; 2014 Aug; 136(34):11946-55. PubMed ID: 25092607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing Topological Barriers against Knot Untying in Thermal and Mechanical Protein Unfolding by Molecular Dynamics Simulations.
    Xu Y; Kang R; Ren L; Yang L; Yue T
    Biomolecules; 2021 Nov; 11(11):. PubMed ID: 34827686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Untying knots in proteins.
    Sułkowska JI; Sułkowski P; Szymczak P; Cieplak M
    J Am Chem Soc; 2010 Oct; 132(40):13954-6. PubMed ID: 20857930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanically tightening, untying and retying a protein trefoil knot by single-molecule force spectroscopy.
    Wang H; Li H
    Chem Sci; 2020 Oct; 11(46):12512-12521. PubMed ID: 34123232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence-specific size, structure, and stability of tight protein knots.
    Dzubiella J
    Biophys J; 2009 Feb; 96(3):831-9. PubMed ID: 19186124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of being knotted: effects of the C-terminal knot structure on enzymatic and mechanical properties of bovine carbonic anhydrase II.
    Alam MT; Yamada T; Carlsson U; Ikai A
    FEBS Lett; 2002 May; 519(1-3):35-40. PubMed ID: 12023014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting atomic details of the unfolding pathway for YibK, a knotted protein from the SPOUT superfamily.
    Tuszynska I; Bujnicki JM
    J Biomol Struct Dyn; 2010 Feb; 27(4):511-20. PubMed ID: 19916572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-atom and coarse-grained simulations of the forced unfolding pathways of the SNARE complex.
    Zheng W
    Proteins; 2014 Jul; 82(7):1376-86. PubMed ID: 24403006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knotting and unknotting of a protein in single molecule experiments.
    Ziegler F; Lim NC; Mandal SS; Pelz B; Ng WP; Schlierf M; Jackson SE; Rief M
    Proc Natl Acad Sci U S A; 2016 Jul; 113(27):7533-8. PubMed ID: 27339135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of bovine carbonic anhydrase II at 1.95 A resolution.
    Saito R; Sato T; Ikai A; Tanaka N
    Acta Crystallogr D Biol Crystallogr; 2004 Apr; 60(Pt 4):792-5. PubMed ID: 15039588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of knot type in the folding of topologically complex lattice proteins.
    Soler MA; Nunes A; Faísca PF
    J Chem Phys; 2014 Jul; 141(2):025101. PubMed ID: 25028045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular modeling study for the binding of zonisamide and topiramate to the human mitochondrial carbonic anhydrase isoform VA.
    Vitale RM; Pedone C; Amodeo P; Antel J; Wurl M; Scozzafava A; Supuran CT; De Simone G
    Bioorg Med Chem; 2007 Jun; 15(12):4152-8. PubMed ID: 17420132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human carbonic anhydrase III: structural and kinetic study of catalysis and proton transfer.
    Duda DM; Tu C; Fisher SZ; An H; Yoshioka C; Govindasamy L; Laipis PJ; Agbandje-McKenna M; Silverman DN; McKenna R
    Biochemistry; 2005 Aug; 44(30):10046-53. PubMed ID: 16042381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular jamming--the cystine slipknot mechanical clamp in all-atom simulations.
    Pepłowski L; Sikora M; Nowak W; Cieplak M
    J Chem Phys; 2011 Feb; 134(8):085102. PubMed ID: 21361557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knotting Optimization and Folding Pathways of a Go-Model with a Deep Knot.
    Dahlstrom TJ; Capraro DT; Jennings PA; Finke JM
    J Phys Chem B; 2022 Dec; 126(48):10221-10236. PubMed ID: 36424347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of the untying of molecular friction knots between individual polymer strands.
    Kirmizialtin S; Makarov DE
    J Chem Phys; 2008 Mar; 128(9):094901. PubMed ID: 18331111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and kinetic analysis of proton shuttle residues in the active site of human carbonic anhydrase III.
    Elder I; Fisher Z; Laipis PJ; Tu C; McKenna R; Silverman DN
    Proteins; 2007 Jul; 68(1):337-43. PubMed ID: 17427958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic coarse-graining fills the gap between atomistic simulations and experimental investigations of mechanical unfolding.
    Knoch F; Schäfer K; Diezemann G; Speck T
    J Chem Phys; 2018 Jan; 148(4):044109. PubMed ID: 29390802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of second coordination sphere amino acid residues on the proton transfer mechanism of human carbonic anhydrase II (HCA II).
    Hakkim V; Subramanian V
    J Phys Chem A; 2010 Aug; 114(30):7952-9. PubMed ID: 20666542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.