BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 26283138)

  • 1. Efficient Electron Collection in Hybrid Polymer Solar Cells: In-Situ-Generated ZnO/Poly(3-hexylthiophene) Scaffolded by a TiO2 Nanorod Array.
    Liao WP; Wu JJ
    J Phys Chem Lett; 2013 Jun; 4(11):1983-8. PubMed ID: 26283138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge collection enhancement by incorporation of gold-silica core-shell nanoparticles into P3HT:PCBM/ZnO nanorod array hybrid solar cells.
    Wang TC; Su YH; Hung YK; Yeh CS; Huang LW; Gomulya W; Lai LH; Loi MA; Yang JS; Wu JJ
    Phys Chem Chem Phys; 2015 Aug; 17(30):19854-61. PubMed ID: 26159896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the morphology of nanostructured ZnO and interface modification on the device configuration and charge transport of ZnO/polymer hybrid solar cells.
    Ruankham P; Yoshikawa S; Sagawa T
    Phys Chem Chem Phys; 2013 Jun; 15(24):9516-22. PubMed ID: 23446342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ZnO and conjugated polymer bulk heterojunction solar cells containing ZnO nanorod photoanode.
    Lee TH; Sue HJ; Cheng X
    Nanotechnology; 2011 Jul; 22(28):285401. PubMed ID: 21625040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic effect of dual interfacial modifications with room-temperature-grown epitaxial ZnO and adsorbed indoline dye for ZnO nanorod array/P3HT hybrid solar cell.
    Chen DW; Wang TC; Liao WP; Wu JJ
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8359-65. PubMed ID: 23937447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of the organic/inorganic interface on the organic-inorganic hybrid solar cells.
    Ichikawa T; Shiratori S
    J Nanosci Nanotechnol; 2012 May; 12(5):3725-31. PubMed ID: 22852300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of inverted-type organic solar cells with a ZnO layer as the electron collection electrode by ac impedance spectroscopy.
    Kuwabara T; Kawahara Y; Yamaguchi T; Takahashi K
    ACS Appl Mater Interfaces; 2009 Oct; 1(10):2107-10. PubMed ID: 20355841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO
    Wu F; Qiao Q; Bahrami B; Chen K; Pathak R; Tong Y; Li X; Zhang T; Jian R
    Nanotechnology; 2018 May; 29(21):215403. PubMed ID: 29521645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of interfacial modifiers in hybrid solar cells: inorganic/polymer bilayer vs inorganic/polymer:fullerene bulk heterojunction.
    Eom SH; Baek MJ; Park H; Yan L; Liu S; You W; Lee SH
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):803-10. PubMed ID: 24351036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay of three-dimensional morphologies and photocarrier dynamics of polymer/TiO2 bulk heterojunction solar cells.
    Li SS; Chang CP; Lin CC; Lin YY; Chang CH; Yang JR; Chu MW; Chen CW
    J Am Chem Soc; 2011 Aug; 133(30):11614-20. PubMed ID: 21682313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passivating ZnO Surface States by C60 Pyrrolidine Tris-Acid for Hybrid Solar Cells Based on Poly(3-hexylthiophene)/ZnO Nanorod Arrays.
    Zhong P; Ma X; Xi H
    Polymers (Basel); 2017 Dec; 10(1):. PubMed ID: 30966038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlating interface heterostructure, charge recombination, and device efficiency of poly(3-hexyl thiophene)/TiO2 nanorod solar cell.
    Zeng TW; Ho CC; Tu YC; Tu GY; Wang LY; Su WF
    Langmuir; 2011 Dec; 27(24):15255-60. PubMed ID: 22050188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells.
    Lin YY; Chu TH; Li SS; Chuang CH; Chang CH; Su WF; Chang CP; Chu MW; Chen CW
    J Am Chem Soc; 2009 Mar; 131(10):3644-9. PubMed ID: 19215126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge-separation enhancement in inverted polymer solar cells by molecular-level triple heterojunction: NiO-np:P3HT:PCBM.
    Pradeep UW; Villani M; Calestani D; Cristofolini L; Iannotta S; Zappettini A; Coppedè N
    Nanotechnology; 2017 Jan; 28(3):035403. PubMed ID: 27966476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical ZnO Nanosheet-Nanorod Architectures for Fabrication of Poly(3-hexylthiophene)/ZnO Hybrid NO2 Sensor.
    Wang J; Li X; Xia Y; Komarneni S; Chen H; Xu J; Xiang L; Xie D
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8600-7. PubMed ID: 26975549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithium doped poly(3-hexylthiophene) for efficient hole transporter and sensitizer in metal free quaterthiophene dye treated hybrid solar cells.
    Pirashanthan A; Velauthapillai D; Robertson N; Ravirajan P
    Sci Rep; 2021 Oct; 11(1):20157. PubMed ID: 34635778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution-processed Ga-doped ZnO nanorod arrays as electron acceptors in organic solar cells.
    Ginting RT; Yap CC; Yahaya M; Salleh MM
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5308-18. PubMed ID: 24636005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of TiO₂ interfacial atomic layers on device performances and exciton dynamics in ZnO nanorod polymer solar cells.
    Jin MJ; Jo J; Kim JH; An KS; Jeong MS; Kim J; Yoo JW
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11649-56. PubMed ID: 24987829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hole-conductor-free perovskite solar cells with carbon counter electrodes based on ZnO nanorod arrays.
    Wang BX; Liu TF; Zhou YB; Chen X; Yuan XB; Yang YY; Liu WP; Wang JM; Han HW; Tang YW
    Phys Chem Chem Phys; 2016 Oct; 18(39):27078-27082. PubMed ID: 27711679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P3HT-based nanoarchitectural Fano solar cells.
    Liao WP; Su YH; Huang YK; Yeh CS; Huang LW; Wu JJ
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17993-8000. PubMed ID: 25223500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.