These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 26283349)
1. Quantifying seasonal population fluxes driving rubella transmission dynamics using mobile phone data. Wesolowski A; Metcalf CJ; Eagle N; Kombich J; Grenfell BT; Bjørnstad ON; Lessler J; Tatem AJ; Buckee CO Proc Natl Acad Sci U S A; 2015 Sep; 112(35):11114-9. PubMed ID: 26283349 [TBL] [Abstract][Full Text] [Related]
2. Dynamic denominators: the impact of seasonally varying population numbers on disease incidence estimates. Zu Erbach-Schoenberg E; Alegana VA; Sorichetta A; Linard C; Lourenço C; Ruktanonchai NW; Graupe B; Bird TJ; Pezzulo C; Wesolowski A; Tatem AJ Popul Health Metr; 2016; 14():35. PubMed ID: 27777514 [TBL] [Abstract][Full Text] [Related]
3. Dynamic assessment of exposure to air pollution using mobile phone data. Dewulf B; Neutens T; Lefebvre W; Seynaeve G; Vanpoucke C; Beckx C; Van de Weghe N Int J Health Geogr; 2016 Apr; 15():14. PubMed ID: 27097526 [TBL] [Abstract][Full Text] [Related]
4. Quantifying the impact of accessibility on preventive healthcare in sub-Saharan Africa using mobile phone data. Wesolowski A; O'Meara WP; Tatem AJ; Ndege S; Eagle N; Buckee CO Epidemiology; 2015 Mar; 26(2):223-8. PubMed ID: 25643101 [TBL] [Abstract][Full Text] [Related]
5. Connecting Mobility to Infectious Diseases: The Promise and Limits of Mobile Phone Data. Wesolowski A; Buckee CO; Engø-Monsen K; Metcalf CJE J Infect Dis; 2016 Dec; 214(suppl_4):S414-S420. PubMed ID: 28830104 [TBL] [Abstract][Full Text] [Related]
6. Practical geospatial and sociodemographic predictors of human mobility. Ruktanonchai CW; Lai S; Utazi CE; Cunningham AD; Koper P; Rogers GE; Ruktanonchai NW; Sadilek A; Woods D; Tatem AJ; Steele JE; Sorichetta A Sci Rep; 2021 Jul; 11(1):15389. PubMed ID: 34321509 [TBL] [Abstract][Full Text] [Related]
7. Measuring mobility, disease connectivity and individual risk: a review of using mobile phone data and mHealth for travel medicine. Lai S; Farnham A; Ruktanonchai NW; Tatem AJ J Travel Med; 2019 May; 26(3):. PubMed ID: 30869148 [TBL] [Abstract][Full Text] [Related]
8. Impact of human mobility on the emergence of dengue epidemics in Pakistan. Wesolowski A; Qureshi T; Boni MF; Sundsøy PR; Johansson MA; Rasheed SB; Engø-Monsen K; Buckee CO Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11887-92. PubMed ID: 26351662 [TBL] [Abstract][Full Text] [Related]
9. Quantifying travel behavior for infectious disease research: a comparison of data from surveys and mobile phones. Wesolowski A; Stresman G; Eagle N; Stevenson J; Owaga C; Marube E; Bousema T; Drakeley C; Cox J; Buckee CO Sci Rep; 2014 Jul; 4():5678. PubMed ID: 25022440 [TBL] [Abstract][Full Text] [Related]
10. Multinational patterns of seasonal asymmetry in human movement influence infectious disease dynamics. Wesolowski A; Zu Erbach-Schoenberg E; Tatem AJ; Lourenço C; Viboud C; Charu V; Eagle N; Engø-Monsen K; Qureshi T; Buckee CO; Metcalf CJE Nat Commun; 2017 Dec; 8(1):2069. PubMed ID: 29234011 [TBL] [Abstract][Full Text] [Related]
11. Identifying seasonal mobility profiles from anonymized and aggregated mobile phone data. Application in food security. Zufiria PJ; Pastor-Escuredo D; Úbeda-Medina L; Hernandez-Medina MA; Barriales-Valbuena I; Morales AJ; Jacques DC; Nkwambi W; Diop MB; Quinn J; Hidalgo-Sanchís P; Luengo-Oroz M PLoS One; 2018; 13(4):e0195714. PubMed ID: 29698404 [TBL] [Abstract][Full Text] [Related]
12. Assessing the use of mobile phone data to describe recurrent mobility patterns in spatial epidemic models. Panigutti C; Tizzoni M; Bajardi P; Smoreda Z; Colizza V R Soc Open Sci; 2017 May; 4(5):160950. PubMed ID: 28572990 [TBL] [Abstract][Full Text] [Related]
13. Using mobile phone data to predict the spatial spread of cholera. Bengtsson L; Gaudart J; Lu X; Moore S; Wetter E; Sallah K; Rebaudet S; Piarroux R Sci Rep; 2015 Mar; 5():8923. PubMed ID: 25747871 [TBL] [Abstract][Full Text] [Related]
14. Adjusting mobile phone data to account for children's travel and the impact on measles dynamics in Zambia. Kostandova N; Prosperi C; Mutembo S; Nakazwe C; Namukoko H; Nachinga B; Chongwe G; Chilumba I; Kabalo EN; Makungo K; Matakala KH; Musukwa G; Hamahuwa M; Mufwambi W; Matoba J; Mutale I; Simulundu E; Ndubani P; Hasan AZ; Truelove SA; Winter AK; Carcelen AC; Lau B; Moss WJ; Wesolowski A Am J Epidemiol; 2024 Aug; ():. PubMed ID: 39191642 [TBL] [Abstract][Full Text] [Related]
15. Measures of Human Mobility Using Mobile Phone Records Enhanced with GIS Data. Williams NE; Thomas TA; Dunbar M; Eagle N; Dobra A PLoS One; 2015; 10(7):e0133630. PubMed ID: 26192322 [TBL] [Abstract][Full Text] [Related]
16. Mobile phone data highlights the role of mass gatherings in the spreading of cholera outbreaks. Finger F; Genolet T; Mari L; de Magny GC; Manga NM; Rinaldo A; Bertuzzo E Proc Natl Acad Sci U S A; 2016 Jun; 113(23):6421-6. PubMed ID: 27217564 [TBL] [Abstract][Full Text] [Related]
17. On the use of human mobility proxies for modeling epidemics. Tizzoni M; Bajardi P; Decuyper A; Kon Kam King G; Schneider CM; Blondel V; Smoreda Z; González MC; Colizza V PLoS Comput Biol; 2014 Jul; 10(7):e1003716. PubMed ID: 25010676 [TBL] [Abstract][Full Text] [Related]
18. A parametric duration model of the reaction times of drivers distracted by mobile phone conversations. Haque MM; Washington S Accid Anal Prev; 2014 Jan; 62():42-53. PubMed ID: 24129320 [TBL] [Abstract][Full Text] [Related]
19. The duration of travel impacts the spatial dynamics of infectious diseases. Giles JR; Zu Erbach-Schoenberg E; Tatem AJ; Gardner L; Bjørnstad ON; Metcalf CJE; Wesolowski A Proc Natl Acad Sci U S A; 2020 Sep; 117(36):22572-22579. PubMed ID: 32839329 [TBL] [Abstract][Full Text] [Related]