BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 26283470)

  • 1. Fabrication of Nanocarbon Composites Using In Situ Chemical Vapor Deposition and Their Applications.
    He C; Zhao N; Shi C; Liu E; Li J
    Adv Mater; 2015 Sep; 27(36):5422-31. PubMed ID: 26283470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocarbon composites and hybrids in sustainability: a review.
    Vilatela JJ; Eder D
    ChemSusChem; 2012 Mar; 5(3):456-78. PubMed ID: 22389320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of carbon nanoscrolls from monolayer graphene.
    Xia D; Xue Q; Xie J; Chen H; Lv C; Besenbacher F; Dong M
    Small; 2010 Sep; 6(18):2010-9. PubMed ID: 20715074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production.
    Kumar M; Ando Y
    J Nanosci Nanotechnol; 2010 Jun; 10(6):3739-58. PubMed ID: 20355365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of deposition pressure on the morphology and structural properties of carbon nanotubes synthesized by hot-filament chemical vapor deposition.
    Arendse CJ; Malgas GF; Scriba MR; Cummings FR; Knoesen D
    J Nanosci Nanotechnol; 2007 Oct; 7(10):3638-42. PubMed ID: 18330185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical vapor deposition synthesis of carbon nanotube-graphene nanosheet hybrids and their application in polymer composites.
    Dichiara A; Yuan JK; Yao SH; Sylvestre A; Bai J
    J Nanosci Nanotechnol; 2012 Sep; 12(9):6935-40. PubMed ID: 23035417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition.
    Nessim GD
    Nanoscale; 2010 Aug; 2(8):1306-23. PubMed ID: 20820718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts.
    Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K
    ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced graphitization of carbon around carbon nanotubes during the formation of carbon nanotube/graphite composites by pyrolysis of carbon nanotube/polyaniline composites.
    Nam DH; Cha SI; Jeong YJ; Hong SH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7365-9. PubMed ID: 24245256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-based electrochemical capacitors.
    Ghosh A; Lee YH
    ChemSusChem; 2012 Mar; 5(3):480-99. PubMed ID: 22389329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid prototyping of carbon-based chemiresistive gas sensors on paper.
    Mirica KA; Azzarelli JM; Weis JG; Schnorr JM; Swager TM
    Proc Natl Acad Sci U S A; 2013 Aug; 110(35):E3265-70. PubMed ID: 23942132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes.
    Omachi H; Segawa Y; Itami K
    Acc Chem Res; 2012 Aug; 45(8):1378-89. PubMed ID: 22587963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-assisted growth of graphene on carbon nanotubes by the chemical vapor deposition method.
    Feng JM; Dai YJ
    Nanoscale; 2013 May; 5(10):4422-6. PubMed ID: 23579565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Temperature Growth of Carbon Nanotubes Catalyzed by Sodium-Based Ingredients.
    Li R; Antunes EF; Kalfon-Cohen E; Kudo A; Acauan L; Yang WD; Wang C; Cui K; Liotta AH; Rajan AG; Gardener J; Bell DC; Strano MS; Liddle JA; Sharma R; Wardle BL
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):9204-9209. PubMed ID: 31132208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair.
    Gao C; Feng P; Peng S; Shuai C
    Acta Biomater; 2017 Oct; 61():1-20. PubMed ID: 28501710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow-dependent directional growth of carbon nanotube forests by chemical vapor deposition.
    Kim H; Kim KS; Kang J; Park YC; Chun KY; Boo JH; Kim YJ; Hong BH; Choi JB
    Nanotechnology; 2011 Mar; 22(9):095303. PubMed ID: 21270486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemically Conjugated Carbon Nanotubes and Graphene for Carrier Modulation.
    Kim KK; Kim SM; Lee YH
    Acc Chem Res; 2016 Mar; 49(3):390-9. PubMed ID: 26878595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bimetallic catalyst for synthesizing quasi-aligned, well-graphitized multiwalled carbon nanotube bundles on a large scale by the catalytic chemical vapor deposition method.
    Mukhopadhyay K; Mathur GN
    J Nanosci Nanotechnol; 2002 Apr; 2(2):197-201. PubMed ID: 12908309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube-reinforced mesoporous hydroxyapatite composites with excellent mechanical and biological properties for bone replacement material application.
    Li H; Song X; Li B; Kang J; Liang C; Wang H; Yu Z; Qiao Z
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1078-1087. PubMed ID: 28531981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotube growth from semiconductor nanoparticles.
    Takagi D; Hibino H; Suzuki S; Kobayashi Y; Homma Y
    Nano Lett; 2007 Aug; 7(8):2272-5. PubMed ID: 17638391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.