These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 26283514)

  • 1. diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data.
    Lun AT; Smyth GK
    BMC Bioinformatics; 2015 Aug; 16():258. PubMed ID: 26283514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HiCcompare: an R-package for joint normalization and comparison of HI-C datasets.
    Stansfield JC; Cresswell KG; Vladimirov VI; Dozmorov MG
    BMC Bioinformatics; 2018 Jul; 19(1):279. PubMed ID: 30064362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FreeHi-C spike-in simulations for benchmarking differential chromatin interaction detection.
    Zheng Y; Zhou P; Keleş S
    Methods; 2021 May; 189():3-11. PubMed ID: 32663510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring significant changes in chromatin conformation with ACCOST.
    Cook KB; Hristov BH; Le Roch KG; Vert JP; Noble WS
    Nucleic Acids Res; 2020 Mar; 48(5):2303-2311. PubMed ID: 32034421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines.
    Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A
    BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. R Tutorial: Detection of Differentially Interacting Chromatin Regions From Multiple Hi-C Datasets.
    Stansfield JC; Tran D; Nguyen T; Dozmorov MG
    Curr Protoc Bioinformatics; 2019 Jun; 66(1):e76. PubMed ID: 31125519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MaxHiC: A robust background correction model to identify biologically relevant chromatin interactions in Hi-C and capture Hi-C experiments.
    Alinejad-Rokny H; Ghavami Modegh R; Rabiee HR; Ramezani Sarbandi E; Rezaie N; Tam KT; Forrest ARR
    PLoS Comput Biol; 2022 Jun; 18(6):e1010241. PubMed ID: 35749574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HiC-bench: comprehensive and reproducible Hi-C data analysis designed for parameter exploration and benchmarking.
    Lazaris C; Kelly S; Ntziachristos P; Aifantis I; Tsirigos A
    BMC Genomics; 2017 Jan; 18(1):22. PubMed ID: 28056762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. multiHiCcompare: joint normalization and comparative analysis of complex Hi-C experiments.
    Stansfield JC; Cresswell KG; Dozmorov MG
    Bioinformatics; 2019 Sep; 35(17):2916-2923. PubMed ID: 30668639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. r3Cseq: an R/Bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data.
    Thongjuea S; Stadhouders R; Grosveld FG; Soler E; Lenhard B
    Nucleic Acids Res; 2013 Jul; 41(13):e132. PubMed ID: 23671339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3DIV: A 3D-genome Interaction Viewer and database.
    Yang D; Jang I; Choi J; Kim MS; Lee AJ; Kim H; Eom J; Kim D; Jung I; Lee B
    Nucleic Acids Res; 2018 Jan; 46(D1):D52-D57. PubMed ID: 29106613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pgltools: a genomic arithmetic tool suite for manipulation of Hi-C peak and other chromatin interaction data.
    Greenwald WW; Li H; Smith EN; Benaglio P; Nariai N; Frazer KA
    BMC Bioinformatics; 2017 Apr; 18(1):207. PubMed ID: 28388874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ChiCMaxima: a robust and simple pipeline for detection and visualization of chromatin looping in Capture Hi-C.
    Ben Zouari Y; Molitor AM; Sikorska N; Pancaldi V; Sexton T
    Genome Biol; 2019 May; 20(1):102. PubMed ID: 31118054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilizing networks for differential analysis of chromatin interactions.
    Liu L; Ruan J
    J Bioinform Comput Biol; 2017 Dec; 15(6):1740008. PubMed ID: 29113562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chrom-Lasso: a lasso regression-based model to detect functional interactions using Hi-C data.
    Lu J; Wang X; Sun K; Lan X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34013331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From reads to regions: a Bioconductor workflow to detect differential binding in ChIP-seq data.
    Lun AT; Smyth GK
    F1000Res; 2015; 4():1080. PubMed ID: 26834993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrastructure for genomic interactions: Bioconductor classes for Hi-C, ChIA-PET and related experiments.
    Lun AT; Perry M; Ing-Simmons E
    F1000Res; 2016; 5():950. PubMed ID: 27303634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding windows.
    Lun AT; Smyth GK
    Nucleic Acids Res; 2016 Mar; 44(5):e45. PubMed ID: 26578583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HiC-ACT: improved detection of chromatin interactions from Hi-C data via aggregated Cauchy test.
    Lagler TM; Abnousi A; Hu M; Yang Y; Li Y
    Am J Hum Genet; 2021 Feb; 108(2):257-268. PubMed ID: 33545029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualizing and Annotating Hi-C Data.
    Pal K; Ferrari F
    Methods Mol Biol; 2022; 2301():97-132. PubMed ID: 34415532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.