BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 26283692)

  • 1. PRD125, a potent and selective inhibitor of sterol O-acyltransferase 2 markedly reduces hepatic cholesteryl ester accumulation and improves liver function in lysosomal acid lipase-deficient mice.
    Lopez AM; Chuang JC; Posey KS; Ohshiro T; Tomoda H; Rudel LL; Turley SD
    J Pharmacol Exp Ther; 2015 Nov; 355(2):159-67. PubMed ID: 26283692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of sterol O-acyltransferase 2 (SOAT2) function in mice deficient in lysosomal acid lipase (LAL) dramatically reduces esterified cholesterol sequestration in the small intestine and liver.
    Lopez AM; Posey KS; Turley SD
    Biochem Biophys Res Commun; 2014 Nov; 454(1):162-6. PubMed ID: 25450374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of loss of SOAT2 function on disease progression in the lysosomal acid lipase-deficient mouse.
    Lopez AM; Chuang JC; Turley SD
    Steroids; 2018 Feb; 130():7-14. PubMed ID: 29246491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Niemann-Pick C1-deficient mice lacking sterol O-acyltransferase 2 have less hepatic cholesterol entrapment and improved liver function.
    Lopez AM; Jones RD; Repa JJ; Turley SD
    Am J Physiol Gastrointest Liver Physiol; 2018 Oct; 315(4):G454-G463. PubMed ID: 29878847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ezetimibe markedly attenuates hepatic cholesterol accumulation and improves liver function in the lysosomal acid lipase-deficient mouse, a model for cholesteryl ester storage disease.
    Chuang JC; Lopez AM; Posey KS; Turley SD
    Biochem Biophys Res Commun; 2014 Jan; 443(3):1073-7. PubMed ID: 24370824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New pyripyropene A derivatives, highly SOAT2-selective inhibitors, improve hypercholesterolemia and atherosclerosis in atherogenic mouse models.
    Ohshiro T; Ohtawa M; Nagamitsu T; Matsuda D; Yagyu H; Davis MA; Rudel LL; Ishibashi S; Tomoda H
    J Pharmacol Exp Ther; 2015 Nov; 355(2):299-307. PubMed ID: 26338984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatic entrapment of esterified cholesterol drives continual expansion of whole body sterol pool in lysosomal acid lipase-deficient mice.
    Aqul A; Lopez AM; Posey KS; Taylor AM; Repa JJ; Burns DK; Turley SD
    Am J Physiol Gastrointest Liver Physiol; 2014 Oct; 307(8):G836-47. PubMed ID: 25147230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular markers of brain cholesterol homeostasis are unchanged despite a smaller brain mass in a mouse model of cholesteryl ester storage disease.
    Aqul AA; Ramirez CM; Lopez AM; Burns DK; Repa JJ; Turley SD
    Lipids; 2022 Jan; 57(1):3-16. PubMed ID: 34618372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitation of the rates of hepatic and intestinal cholesterol synthesis in lysosomal acid lipase-deficient mice before and during treatment with ezetimibe.
    Chuang JC; Lopez AM; Turley SD
    Biochem Pharmacol; 2017 Jul; 135():116-125. PubMed ID: 28322747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hepatic cholesteryl ester accumulation in lysosomal acid lipase deficiency: non-invasive identification and treatment monitoring by magnetic resonance.
    Thelwall PE; Smith FE; Leavitt MC; Canty D; Hu W; Hollingsworth KG; Thoma C; Trenell MI; Taylor R; Rutkowski JV; Blamire AM; Quinn AG
    J Hepatol; 2013 Sep; 59(3):543-9. PubMed ID: 23624251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and functional characterization of human lysosomal acid lipase gene (LIPA) mutation responsible for cholesteryl ester storage disease (CESD) phenotype.
    Rajamohan F; Reyes AR; Ruangsiriluk W; Hoth LR; Han S; Caspers N; Tu M; Ward J; Kurumbail RG
    Protein Expr Purif; 2015 Jun; 110():22-9. PubMed ID: 25620107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysosomal acid lipase deficiency: diagnosis and treatment of Wolman and Cholesteryl Ester Storage Diseases.
    Porto AF
    Pediatr Endocrinol Rev; 2014 Sep; 12 Suppl 1():125-32. PubMed ID: 25345094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversal of advanced disease in lysosomal acid lipase deficient mice: a model for lysosomal acid lipase deficiency disease.
    Sun Y; Xu YH; Du H; Quinn B; Liou B; Stanton L; Inskeep V; Ran H; Jakubowitz P; Grilliot N; Grabowski GA
    Mol Genet Metab; 2014 Jul; 112(3):229-41. PubMed ID: 24837159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute sterol o-acyltransferase 2 (SOAT2) knockdown rapidly mobilizes hepatic cholesterol for fecal excretion.
    Marshall SM; Gromovsky AD; Kelley KL; Davis MA; Wilson MD; Lee RG; Crooke RM; Graham MJ; Rudel LL; Brown JM; Temel RE
    PLoS One; 2014; 9(6):e98953. PubMed ID: 24901470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysosomal acid lipase deficiency: correction of lipid storage by adenovirus-mediated gene transfer in mice.
    Du H; Heur M; Witte DP; Ameis D; Grabowski GA
    Hum Gene Ther; 2002 Jul; 13(11):1361-72. PubMed ID: 12162818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatocyte-specific deletion of lysosomal acid lipase leads to cholesteryl ester but not triglyceride or retinyl ester accumulation.
    Pajed L; Wagner C; Taschler U; Schreiber R; Kolleritsch S; Fawzy N; Pototschnig I; Schoiswohl G; Pusch LM; Wieser BI; Vesely P; Hoefler G; Eichmann TO; Zimmermann R; Lass A
    J Biol Chem; 2019 Jun; 294(23):9118-9133. PubMed ID: 31023823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extended use of a selective inhibitor of acid lipase for the diagnosis of Wolman disease and cholesteryl ester storage disease.
    Civallero G; De Mari J; Bittar C; Burin M; Giugliani R
    Gene; 2014 Apr; 539(1):154-6. PubMed ID: 24508470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hepatocyte-specific lysosomal acid lipase deficiency protects mice from diet-induced obesity but promotes hepatic inflammation.
    Leopold C; Duta-Mare M; Sachdev V; Goeritzer M; Maresch LK; Kolb D; Reicher H; Wagner B; Stojakovic T; Ruelicke T; Haemmerle G; Hoefler G; Sattler W; Kratky D
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Apr; 1864(4):500-511. PubMed ID: 30639734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and clinical characterization of a series of patients with childhood-onset lysosomal acid lipase deficiency. Retrospective investigations, follow-up and detection of two novel LIPA pathogenic variants.
    Pisciotta L; Tozzi G; Travaglini L; Taurisano R; Lucchi T; Indolfi G; Papadia F; Di Rocco M; D'Antiga L; Crock P; Vora K; Nightingale S; Michelakakis H; Garoufi A; Lykopoulou L; Bertolini S; Calandra S
    Atherosclerosis; 2017 Oct; 265():124-132. PubMed ID: 28881270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic and biochemical evidence that CESD and Wolman disease are distinguished by residual lysosomal acid lipase activity.
    Aslanidis C; Ries S; Fehringer P; Büchler C; Klima H; Schmitz G
    Genomics; 1996 Apr; 33(1):85-93. PubMed ID: 8617513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.