These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 26283692)
1. PRD125, a potent and selective inhibitor of sterol O-acyltransferase 2 markedly reduces hepatic cholesteryl ester accumulation and improves liver function in lysosomal acid lipase-deficient mice. Lopez AM; Chuang JC; Posey KS; Ohshiro T; Tomoda H; Rudel LL; Turley SD J Pharmacol Exp Ther; 2015 Nov; 355(2):159-67. PubMed ID: 26283692 [TBL] [Abstract][Full Text] [Related]
2. Deletion of sterol O-acyltransferase 2 (SOAT2) function in mice deficient in lysosomal acid lipase (LAL) dramatically reduces esterified cholesterol sequestration in the small intestine and liver. Lopez AM; Posey KS; Turley SD Biochem Biophys Res Commun; 2014 Nov; 454(1):162-6. PubMed ID: 25450374 [TBL] [Abstract][Full Text] [Related]
3. Impact of loss of SOAT2 function on disease progression in the lysosomal acid lipase-deficient mouse. Lopez AM; Chuang JC; Turley SD Steroids; 2018 Feb; 130():7-14. PubMed ID: 29246491 [TBL] [Abstract][Full Text] [Related]
4. Niemann-Pick C1-deficient mice lacking sterol O-acyltransferase 2 have less hepatic cholesterol entrapment and improved liver function. Lopez AM; Jones RD; Repa JJ; Turley SD Am J Physiol Gastrointest Liver Physiol; 2018 Oct; 315(4):G454-G463. PubMed ID: 29878847 [TBL] [Abstract][Full Text] [Related]
5. Ezetimibe markedly attenuates hepatic cholesterol accumulation and improves liver function in the lysosomal acid lipase-deficient mouse, a model for cholesteryl ester storage disease. Chuang JC; Lopez AM; Posey KS; Turley SD Biochem Biophys Res Commun; 2014 Jan; 443(3):1073-7. PubMed ID: 24370824 [TBL] [Abstract][Full Text] [Related]
6. New pyripyropene A derivatives, highly SOAT2-selective inhibitors, improve hypercholesterolemia and atherosclerosis in atherogenic mouse models. Ohshiro T; Ohtawa M; Nagamitsu T; Matsuda D; Yagyu H; Davis MA; Rudel LL; Ishibashi S; Tomoda H J Pharmacol Exp Ther; 2015 Nov; 355(2):299-307. PubMed ID: 26338984 [TBL] [Abstract][Full Text] [Related]
7. Hepatic entrapment of esterified cholesterol drives continual expansion of whole body sterol pool in lysosomal acid lipase-deficient mice. Aqul A; Lopez AM; Posey KS; Taylor AM; Repa JJ; Burns DK; Turley SD Am J Physiol Gastrointest Liver Physiol; 2014 Oct; 307(8):G836-47. PubMed ID: 25147230 [TBL] [Abstract][Full Text] [Related]
8. Molecular markers of brain cholesterol homeostasis are unchanged despite a smaller brain mass in a mouse model of cholesteryl ester storage disease. Aqul AA; Ramirez CM; Lopez AM; Burns DK; Repa JJ; Turley SD Lipids; 2022 Jan; 57(1):3-16. PubMed ID: 34618372 [TBL] [Abstract][Full Text] [Related]
9. Quantitation of the rates of hepatic and intestinal cholesterol synthesis in lysosomal acid lipase-deficient mice before and during treatment with ezetimibe. Chuang JC; Lopez AM; Turley SD Biochem Pharmacol; 2017 Jul; 135():116-125. PubMed ID: 28322747 [TBL] [Abstract][Full Text] [Related]
10. Hepatic cholesteryl ester accumulation in lysosomal acid lipase deficiency: non-invasive identification and treatment monitoring by magnetic resonance. Thelwall PE; Smith FE; Leavitt MC; Canty D; Hu W; Hollingsworth KG; Thoma C; Trenell MI; Taylor R; Rutkowski JV; Blamire AM; Quinn AG J Hepatol; 2013 Sep; 59(3):543-9. PubMed ID: 23624251 [TBL] [Abstract][Full Text] [Related]
11. Expression and functional characterization of human lysosomal acid lipase gene (LIPA) mutation responsible for cholesteryl ester storage disease (CESD) phenotype. Rajamohan F; Reyes AR; Ruangsiriluk W; Hoth LR; Han S; Caspers N; Tu M; Ward J; Kurumbail RG Protein Expr Purif; 2015 Jun; 110():22-9. PubMed ID: 25620107 [TBL] [Abstract][Full Text] [Related]
12. Lysosomal acid lipase deficiency: diagnosis and treatment of Wolman and Cholesteryl Ester Storage Diseases. Porto AF Pediatr Endocrinol Rev; 2014 Sep; 12 Suppl 1():125-32. PubMed ID: 25345094 [TBL] [Abstract][Full Text] [Related]
13. Reversal of advanced disease in lysosomal acid lipase deficient mice: a model for lysosomal acid lipase deficiency disease. Sun Y; Xu YH; Du H; Quinn B; Liou B; Stanton L; Inskeep V; Ran H; Jakubowitz P; Grilliot N; Grabowski GA Mol Genet Metab; 2014 Jul; 112(3):229-41. PubMed ID: 24837159 [TBL] [Abstract][Full Text] [Related]
14. Acute sterol o-acyltransferase 2 (SOAT2) knockdown rapidly mobilizes hepatic cholesterol for fecal excretion. Marshall SM; Gromovsky AD; Kelley KL; Davis MA; Wilson MD; Lee RG; Crooke RM; Graham MJ; Rudel LL; Brown JM; Temel RE PLoS One; 2014; 9(6):e98953. PubMed ID: 24901470 [TBL] [Abstract][Full Text] [Related]
15. Lysosomal acid lipase deficiency: correction of lipid storage by adenovirus-mediated gene transfer in mice. Du H; Heur M; Witte DP; Ameis D; Grabowski GA Hum Gene Ther; 2002 Jul; 13(11):1361-72. PubMed ID: 12162818 [TBL] [Abstract][Full Text] [Related]
17. Extended use of a selective inhibitor of acid lipase for the diagnosis of Wolman disease and cholesteryl ester storage disease. Civallero G; De Mari J; Bittar C; Burin M; Giugliani R Gene; 2014 Apr; 539(1):154-6. PubMed ID: 24508470 [TBL] [Abstract][Full Text] [Related]
18. Hepatocyte-specific lysosomal acid lipase deficiency protects mice from diet-induced obesity but promotes hepatic inflammation. Leopold C; Duta-Mare M; Sachdev V; Goeritzer M; Maresch LK; Kolb D; Reicher H; Wagner B; Stojakovic T; Ruelicke T; Haemmerle G; Hoefler G; Sattler W; Kratky D Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Apr; 1864(4):500-511. PubMed ID: 30639734 [TBL] [Abstract][Full Text] [Related]
19. Molecular and clinical characterization of a series of patients with childhood-onset lysosomal acid lipase deficiency. Retrospective investigations, follow-up and detection of two novel LIPA pathogenic variants. Pisciotta L; Tozzi G; Travaglini L; Taurisano R; Lucchi T; Indolfi G; Papadia F; Di Rocco M; D'Antiga L; Crock P; Vora K; Nightingale S; Michelakakis H; Garoufi A; Lykopoulou L; Bertolini S; Calandra S Atherosclerosis; 2017 Oct; 265():124-132. PubMed ID: 28881270 [TBL] [Abstract][Full Text] [Related]
20. Genetic and biochemical evidence that CESD and Wolman disease are distinguished by residual lysosomal acid lipase activity. Aslanidis C; Ries S; Fehringer P; Büchler C; Klima H; Schmitz G Genomics; 1996 Apr; 33(1):85-93. PubMed ID: 8617513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]