BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 26283774)

  • 21. A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects Salmonella enterica serovar Typhimurium against killing by NO in anoxic environments.
    Mills PC; Rowley G; Spiro S; Hinton JCD; Richardson DJ
    Microbiology (Reading); 2008 Apr; 154(Pt 4):1218-1228. PubMed ID: 18375814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins.
    Gaucher SP; Redding AM; Mukhopadhyay A; Keasling JD; Singh AK
    J Proteome Res; 2008 Jun; 7(6):2320-31. PubMed ID: 18416566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The nrfI gene is essential for the attachment of the active site haem group of Wolinella succinogenes cytochrome c nitrite reductase.
    Pisa R; Stein T; Eichler R; Gross R; Simon J
    Mol Microbiol; 2002 Feb; 43(3):763-70. PubMed ID: 11929530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contribution of rubredoxin:oxygen oxidoreductases and hybrid cluster proteins of Desulfovibrio vulgaris Hildenborough to survival under oxygen and nitrite stress.
    Yurkiw MA; Voordouw J; Voordouw G
    Environ Microbiol; 2012 Oct; 14(10):2711-25. PubMed ID: 22947039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes.
    Simon J; Gross R; Einsle O; Kroneck PM; Kröger A; Klimmek O
    Mol Microbiol; 2000 Feb; 35(3):686-96. PubMed ID: 10672190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and function of formate-dependent cytochrome c nitrite reductase, NrfA.
    Einsle O
    Methods Enzymol; 2011; 496():399-422. PubMed ID: 21514473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystallization and preliminary structure determination of the membrane-bound complex cytochrome c nitrite reductase from Desulfovibrio vulgaris Hildenborough.
    Rodrigues ML; Oliveira T; Matias PM; Martins IC; Valente FM; Pereira IA; Archer M
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Jun; 62(Pt 6):565-8. PubMed ID: 16754983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent mechanistic developments for cytochrome c nitrite reductase, the key enzyme in the dissimilatory nitrate reduction to ammonium pathway.
    Hird K; Campeciño JO; Lehnert N; Hegg EL
    J Inorg Biochem; 2024 Jul; 256():112542. PubMed ID: 38631103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ammonification in Bacillus subtilis utilizing dissimilatory nitrite reductase is dependent on resDE.
    Hoffmann T; Frankenberg N; Marino M; Jahn D
    J Bacteriol; 1998 Jan; 180(1):186-9. PubMed ID: 9422613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redox properties of lysine- and methionine-coordinated hemes ensure downhill electron transfer in NrfH2A4 nitrite reductase.
    Todorovic S; Rodrigues ML; Matos D; Pereira IA
    J Phys Chem B; 2012 May; 116(19):5637-43. PubMed ID: 22519292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the structural and kinetic properties of the cytochrome c nitrite reductases from Escherichia coli, Wolinella succinogenes, Sulfurospirillum deleyianum and Desulfovibrio desulfuricans.
    Clarke TA; Hemmings AM; Burlat B; Butt JN; Cole JA; Richardson DJ
    Biochem Soc Trans; 2006 Feb; 34(Pt 1):143-5. PubMed ID: 16417505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Key bacterial multi-centered metal enzymes involved in nitrate and sulfate respiration.
    Fritz G; Einsle O; Rudolf M; Schiffer A; Kroneck PM
    J Mol Microbiol Biotechnol; 2005; 10(2-4):223-33. PubMed ID: 16645317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for iron-dependent nitrate respiration in the dissimilatory iron-reducing bacterium Geobacter metallireducens.
    Senko JM; Stolz JF
    Appl Environ Microbiol; 2001 Aug; 67(8):3750-2. PubMed ID: 11472960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional response of Desulfovibrio vulgaris Hildenborough to oxidative stress mimicking environmental conditions.
    Pereira PM; He Q; Xavier AV; Zhou J; Pereira IA; Louro RO
    Arch Microbiol; 2008 May; 189(5):451-61. PubMed ID: 18060664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. σ54-dependent regulome in Desulfovibrio vulgaris Hildenborough.
    Kazakov AE; Rajeev L; Chen A; Luning EG; Dubchak I; Mukhopadhyay A; Novichkov PS
    BMC Genomics; 2015 Nov; 16():919. PubMed ID: 26555820
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of a heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough.
    Pereira IA; LeGall J; Xavier AV; Teixeira M
    Biochim Biophys Acta; 2000 Aug; 1481(1):119-30. PubMed ID: 11004582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A sulfate-reducing bacterium that can detoxify U(VI) and obtain energy via nitrate reduction.
    Pietzsch K; Babel W
    J Basic Microbiol; 2003; 43(4):348-61. PubMed ID: 12872316
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron transport chains and bioenergetics of respiratory nitrogen metabolism in Wolinella succinogenes and other Epsilonproteobacteria.
    Kern M; Simon J
    Biochim Biophys Acta; 2009 Jun; 1787(6):646-56. PubMed ID: 19171117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutualistic growth of the sulfate-reducer Desulfovibrio vulgaris Hildenborough with different carbohydrates.
    Santana MM; Portillo MC; Gonzalez JM
    Mikrobiologiia; 2012; 81(6):720-5. PubMed ID: 23610921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energetic consequences of nitrite stress in Desulfovibrio vulgaris Hildenborough, inferred from global transcriptional analysis.
    He Q; Huang KH; He Z; Alm EJ; Fields MW; Hazen TC; Arkin AP; Wall JD; Zhou J
    Appl Environ Microbiol; 2006 Jun; 72(6):4370-81. PubMed ID: 16751553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.