BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26283943)

  • 1. Sleep spindle and K-complex detection using tunable Q-factor wavelet transform and morphological component analysis.
    Lajnef T; Chaibi S; Eichenlaub JB; Ruby PM; Aguera PE; Samet M; Kachouri A; Jerbi K
    Front Hum Neurosci; 2015; 9():414. PubMed ID: 26283943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meet Spinky: An Open-Source Spindle and K-Complex Detection Toolbox Validated on the Open-Access Montreal Archive of Sleep Studies (MASS).
    Lajnef T; O'Reilly C; Combrisson E; Chaibi S; Eichenlaub JB; Ruby PM; Aguera PE; Samet M; Kachouri A; Frenette S; Carrier J; Jerbi K
    Front Neuroinform; 2017; 11():15. PubMed ID: 28303099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features.
    Hassan AR; Bhuiyan MI
    J Neurosci Methods; 2016 Sep; 271():107-18. PubMed ID: 27456762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of k-complexes in EEG signals using a multi-domain feature extraction coupled with a least square support vector machine classifier.
    Al-Salman W; Li Y; Wen P
    Neurosci Res; 2021 Nov; 172():26-40. PubMed ID: 33965451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reliable approach to distinguish between transient with and without HFOs using TQWT and MCA.
    Chaibi S; Lajnef T; Sakka Z; Samet M; Kachouri A
    J Neurosci Methods; 2014 Jul; 232():36-46. PubMed ID: 24814526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of K-complexes and sleep spindles (DETOKS) using sparse optimization.
    Parekh A; Selesnick IW; Rapoport DM; Ayappa I
    J Neurosci Methods; 2015 Aug; 251():37-46. PubMed ID: 25956566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating.
    Hassan AR; Siuly S; Zhang Y
    Comput Methods Programs Biomed; 2016 Dec; 137():247-259. PubMed ID: 28110729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A RUSBoosted tree method for k-complex detection using tunable Q-factor wavelet transform and multi-domain feature extraction.
    Li Y; Dong X
    Front Neurosci; 2023; 17():1108059. PubMed ID: 36998730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A feature extraction technique based on tunable Q-factor wavelet transform for brain signal classification.
    Al Ghayab HR; Li Y; Siuly S; Abdulla S
    J Neurosci Methods; 2019 Jan; 312():43-52. PubMed ID: 30468823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multichannel Signals Reconstruction Based on Tunable
    Li Q; Hu W; Peng E; Liang SY
    Entropy (Basel); 2018 Apr; 20(4):. PubMed ID: 33265354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revised Tunable Q-Factor Wavelet Transform for EEG-Based Epileptic Seizure Detection.
    Liu Z; Zhu B; Hu M; Deng Z; Zhang J
    IEEE Trans Neural Syst Rehabil Eng; 2023 Mar; PP():. PubMed ID: 37028382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of myocardial infarction based on hybrid feature extraction and artificial intelligence tools by adopting tunable-Q wavelet transform (TQWT), variational mode decomposition (VMD) and neural networks.
    Zeng W; Yuan J; Yuan C; Wang Q; Liu F; Wang Y
    Artif Intell Med; 2020 Jun; 106():101848. PubMed ID: 32593387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basis pursuit sparse decomposition using tunable-Q wavelet transform (BPSD-TQWT) for denoising of electrocardiograms.
    Srinivasulu A; Sriraam N
    Phys Eng Sci Med; 2022 Sep; 45(3):817-833. PubMed ID: 35771386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Migraine detection from EEG signals using tunable Q-factor wavelet transform and ensemble learning techniques.
    Aslan Z
    Phys Eng Sci Med; 2021 Dec; 44(4):1201-1212. PubMed ID: 34505992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stage-independent, single lead EEG sleep spindle detection using the continuous wavelet transform and local weighted smoothing.
    Tsanas A; Clifford GD
    Front Hum Neurosci; 2015; 9():181. PubMed ID: 25926784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multichannel sleep spindle detection using sparse low-rank optimization.
    Parekh A; Selesnick IW; Osorio RS; Varga AW; Rapoport DM; Ayappa I
    J Neurosci Methods; 2017 Aug; 288():1-16. PubMed ID: 28600157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sleep spindles and spike-wave discharges in EEG: Their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis.
    Sitnikova E; Hramov AE; Koronovsky AA; van Luijtelaar G
    J Neurosci Methods; 2009 Jun; 180(2):304-16. PubMed ID: 19383511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of Myocardial Infarction from Multi-lead ECG using Dual-Q Tunable Q-Factor Wavelet Transform.
    Liu J; Zhang C; Ristaniemi T; Cong F
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1496-1499. PubMed ID: 31946177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated detection and localization system of myocardial infarction in single-beat ECG using Dual-Q TQWT and wavelet packet tensor decomposition.
    Liu J; Zhang C; Zhu Y; Ristaniemi T; Parviainen T; Cong F
    Comput Methods Programs Biomed; 2020 Feb; 184():105120. PubMed ID: 31627147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. K-complexes Detection in EEG Signals using Fractal and Frequency Features Coupled with an Ensemble Classification Model.
    Al-Salman W; Li Y; Wen P
    Neuroscience; 2019 Dec; 422():119-133. PubMed ID: 31682947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.