These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 26283957)

  • 21. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic fitting of spiking neuron models to electrophysiological recordings.
    Rossant C; Goodman DF; Platkiewicz J; Brette R
    Front Neuroinform; 2010; 4():2. PubMed ID: 20224819
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation.
    Sherfey JS; Soplata AE; Ardid S; Roberts EA; Stanley DA; Pittman-Polletta BR; Kopell NJ
    Front Neuroinform; 2018; 12():10. PubMed ID: 29599715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fitting neuron models to spike trains.
    Rossant C; Goodman DF; Fontaine B; Platkiewicz J; Magnusson AK; Brette R
    Front Neurosci; 2011; 5():9. PubMed ID: 21415925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Code generation: a strategy for neural network simulators.
    Goodman DF
    Neuroinformatics; 2010 Oct; 8(3):183-96. PubMed ID: 20857234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient generation of connectivity in neuronal networks from simulator-independent descriptions.
    Djurfeldt M; Davison AP; Eppler JM
    Front Neuroinform; 2014; 8():43. PubMed ID: 24795620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PyNEST: A Convenient Interface to the NEST Simulator.
    Eppler JM; Helias M; Muller E; Diesmann M; Gewaltig MO
    Front Neuroinform; 2008; 2():12. PubMed ID: 19198667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Equation-oriented specification of neural models for simulations.
    Stimberg M; Goodman DF; Benichoux V; Brette R
    Front Neuroinform; 2014; 8():6. PubMed ID: 24550820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PyGeNN: A Python Library for GPU-Enhanced Neural Networks.
    Knight JC; Komissarov A; Nowotny T
    Front Neuroinform; 2021; 15():659005. PubMed ID: 33967731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GPUPeP: Parallel Enzymatic Numerical P System simulator with a Python-based interface.
    Raghavan S; Rai SS; Rohit MP; Chandrasekaran K
    Biosystems; 2020 Oct; 196():104186. PubMed ID: 32535178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SWsnn: A Novel Simulator for Spiking Neural Networks.
    Wang Z; Li X; Fan J; Meng J; Lin Z; Pan Y; Wei Y
    J Comput Biol; 2023 Sep; 30(9):951-960. PubMed ID: 37585615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enabling Large-Scale Simulations With the GENESIS Neuronal Simulator.
    Crone JC; Vindiola MM; Yu AB; Boothe DL; Beeman D; Oie KS; Franaszczuk PJ
    Front Neuroinform; 2019; 13():69. PubMed ID: 31803040
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations.
    Hahne J; Helias M; Kunkel S; Igarashi J; Bolten M; Frommer A; Diesmann M
    Front Neuroinform; 2015; 9():22. PubMed ID: 26441628
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BindsNET: A Machine Learning-Oriented Spiking Neural Networks Library in Python.
    Hazan H; Saunders DJ; Khan H; Patel D; Sanghavi DT; Siegelmann HT; Kozma R
    Front Neuroinform; 2018; 12():89. PubMed ID: 30631269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PAX: A mixed hardware/software simulation platform for spiking neural networks.
    Renaud S; Tomas J; Lewis N; Bornat Y; Daouzli A; Rudolph M; Destexhe A; Saïghi S
    Neural Netw; 2010 Sep; 23(7):905-16. PubMed ID: 20434309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Establishing a novel modeling tool: a python-based interface for a neuromorphic hardware system.
    Brüderle D; Müller E; Davison A; Muller E; Schemmel J; Meier K
    Front Neuroinform; 2009; 3():17. PubMed ID: 19562085
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An efficient simulation environment for modeling large-scale cortical processing.
    Richert M; Nageswaran JM; Dutt N; Krichmar JL
    Front Neuroinform; 2011; 5():19. PubMed ID: 22007166
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors.
    Cheung K; Schultz SR; Luk W
    Front Neurosci; 2015; 9():516. PubMed ID: 26834542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Code Generation in Computational Neuroscience: A Review of Tools and Techniques.
    Blundell I; Brette R; Cleland TA; Close TG; Coca D; Davison AP; Diaz-Pier S; Fernandez Musoles C; Gleeson P; Goodman DFM; Hines M; Hopkins MW; Kumbhar P; Lester DR; Marin B; Morrison A; Müller E; Nowotny T; Peyser A; Plotnikov D; Richmond P; Rowley A; Rumpe B; Stimberg M; Stokes AB; Tomkins A; Trensch G; Woodman M; Eppler JM
    Front Neuroinform; 2018; 12():68. PubMed ID: 30455637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.