These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26284023)

  • 1. Maintaining Balance when Looking at a Virtual Reality Three-Dimensional Display of a Field of Moving Dots or at a Virtual Reality Scene.
    Chiarovano E; de Waele C; MacDougall HG; Rogers SJ; Burgess AM; Curthoys IS
    Front Neurol; 2015; 6():164. PubMed ID: 26284023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Sensitive Test Using Virtual Reality and Foam to Probe Postural Control in Vestibular Patients: The Unilateral Schwannoma Model.
    Oussou G; Magnani C; Bargiotas I; Lamas G; Tankere F; Vidal C
    Front Neurol; 2022; 13():891232. PubMed ID: 35693011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Balance in Virtual Reality: Effect of Age and Bilateral Vestibular Loss.
    Chiarovano E; Wang W; Rogers SJ; MacDougall HG; Curthoys IS; de Waele C
    Front Neurol; 2017; 8():5. PubMed ID: 28163693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Validity of an Oculus Rift to Assess Postural Changes During Balance Tasks.
    Marchetto J; Wright WG
    Hum Factors; 2019 Dec; 61(8):1340-1352. PubMed ID: 30917062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control Mechanisms of Static and Dynamic Balance in Adults With and Without Vestibular Dysfunction in Oculus Virtual Environments.
    Lubetzky AV; Hujsak BD; Kelly JL; Fu G; Perlin K
    PM R; 2018 Nov; 10(11):1223-1236.e2. PubMed ID: 30503230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A virtual reality head stability test for patients with vestibular dysfunction.
    Lubetzky AV; Hujsak BD
    J Vestib Res; 2018; 28(5-6):393-400. PubMed ID: 30856135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postural adaptation in elderly patients with instability and risk of falling after balance training using a virtual-reality system.
    Suárez H; Suárez A; Lavinsky L
    Int Tinnitus J; 2006; 12(1):41-4. PubMed ID: 17147038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Postural Control in Patients with Glaucoma Using a Virtual Reality Environment.
    Diniz-Filho A; Boer ER; Gracitelli CP; Abe RY; van Driel N; Yang Z; Medeiros FA
    Ophthalmology; 2015 Jun; 122(6):1131-8. PubMed ID: 25892017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study.
    Basso Moro S; Bisconti S; Muthalib M; Spezialetti M; Cutini S; Ferrari M; Placidi G; Quaresima V
    Neuroimage; 2014 Jan; 85 Pt 1():451-60. PubMed ID: 23684867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases.
    Gatica-Rojas V; Méndez-Rebolledo G
    Neural Regen Res; 2014 Apr; 9(8):888-96. PubMed ID: 25206907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual reality applications in improving postural control and minimizing falls.
    Virk S; McConville KM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2694-7. PubMed ID: 17946975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of optokinetic virtual reality scenes on a sitting-to-stand movement.
    Siriphorn A; Jarudej C; Ochaklin N; Nuttawanlop S; Prasertteerapong T
    Hum Mov Sci; 2022 Jun; 83():102956. PubMed ID: 35526451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study.
    Prasertsakul T; Kaimuk P; Chinjenpradit W; Limroongreungrat W; Charoensuk W
    Biomed Eng Online; 2018 Sep; 17(1):124. PubMed ID: 30227884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.
    Meyer GF; Shao F; White MD; Hopkins C; Robotham AJ
    PLoS One; 2013; 8(6):e67651. PubMed ID: 23840760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of Visual Stimuli on Stability and Complexity of Postural Control.
    Luo H; Wang X; Fan M; Deng L; Jian C; Wei M; Luo J
    Front Neurol; 2018; 9():48. PubMed ID: 29472888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of the visual contribution to standing balance using virtual reality.
    Assländer L; Albrecht M; Diehl M; Missen KJ; Carpenter MG; Streuber S
    Sci Rep; 2023 Feb; 13(1):2594. PubMed ID: 36788259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered postural stability in elderly women following a single session of head-mounted display virtual reality.
    Cieślik B; Serweta A; Federico S; Szczepańska-Gieracha J
    Acta Bioeng Biomech; 2021; 23(1):107-111. PubMed ID: 34846028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human postural responses to motion of real and virtual visual environments under different support base conditions.
    Mergner T; Schweigart G; Maurer C; Blümle A
    Exp Brain Res; 2005 Dec; 167(4):535-56. PubMed ID: 16132969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating the internal model of verticality by virtual reality and body-weight support walking: A pilot study.
    Odin A; Faletto-Passy D; Assaban F; Pérennou D
    Ann Phys Rehabil Med; 2018 Sep; 61(5):292-299. PubMed ID: 30031891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proof-of-Concept of the Virtual Reality Comprehensive Balance Assessment and Training for Sensory Organization of Dynamic Postural Control.
    Moon S; Huang CK; Sadeghi M; Akinwuntan AE; Devos H
    Front Bioeng Biotechnol; 2021; 9():678006. PubMed ID: 34395396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.