These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26284089)

  • 1. Evolution of plant δ(1)-pyrroline-5-carboxylate reductases from phylogenetic and structural perspectives.
    Forlani G; Makarova KS; Ruszkowski M; Bertazzini M; Nocek B
    Front Plant Sci; 2015; 6():567. PubMed ID: 26284089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exogenous ornithine is an effective precursor and the δ-ornithine amino transferase pathway contributes to proline accumulation under high N recycling in salt-stressed cashew leaves.
    da Rocha IM; Vitorello VA; Silva JS; Ferreira-Silva SL; Viégas RA; Silva EN; Silveira JA
    J Plant Physiol; 2012 Jan; 169(1):41-9. PubMed ID: 21903295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Δ1-Pyrroline-5-carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co-substrate.
    Giberti S; Funck D; Forlani G
    New Phytol; 2014 May; 202(3):911-919. PubMed ID: 24467670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of Medicago truncatula δ(1)-pyrroline-5-carboxylate reductase provides new insights into regulation of proline biosynthesis in plants.
    Ruszkowski M; Nocek B; Forlani G; Dauter Z
    Front Plant Sci; 2015; 6():869. PubMed ID: 26579138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning and evidence for osmoregulation of the delta 1-pyrroline-5-carboxylate reductase (proC) gene in pea (Pisum sativum L.).
    Williamson CL; Slocum RD
    Plant Physiol; 1992; 100(3):1464-70. PubMed ID: 11537868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of delta1-pyrroline-5-carboxylate reductase from human pathogens Neisseria meningitides and Streptococcus pyogenes.
    Nocek B; Chang C; Li H; Lezondra L; Holzle D; Collart F; Joachimiak A
    J Mol Biol; 2005 Nov; 354(1):91-106. PubMed ID: 16233902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional properties and structural characterization of rice δ(1)-pyrroline-5-carboxylate reductase.
    Forlani G; Bertazzini M; Zarattini M; Funck D; Ruszkowski M; Nocek B
    Front Plant Sci; 2015; 6():565. PubMed ID: 26284087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Characterization of Four Putative δ
    Forlani G; Nocek B; Chakravarthy S; Joachimiak A
    Front Microbiol; 2017; 8():1442. PubMed ID: 28824574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and expression analysis of proline metabolism-related genes in Chrysanthemum lavandulifolium.
    Zhang M; Huang H; Dai S
    Gene; 2014 Mar; 537(2):203-13. PubMed ID: 24434369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of Delta(1)-pyrroline-5-carboxylate reductase isoenzymes, indicating differential distribution in spinach (Spinacia oleracea L.) leaves.
    Murahama M; Yoshida T; Hayashi F; Ichino T; Sanada Y; Wada K
    Plant Cell Physiol; 2001 Jul; 42(7):742-50. PubMed ID: 11479381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. P5C as an Interface of Proline Interconvertible Amino Acids and Its Role in Regulation of Cell Survival and Apoptosis.
    Chalecka M; Kazberuk A; Palka J; Surazynski A
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intriguing Role of Proline in Redox Potential Conferring High Temperature Stress Tolerance.
    Kavi Kishor PB; Suravajhala P; Rathnagiri P; Sreenivasulu N
    Front Plant Sci; 2022; 13():867531. PubMed ID: 35795343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of levels of proline as an osmolyte in plants under water stress.
    Yoshiba Y; Kiyosue T; Nakashima K; Yamaguchi-Shinozaki K; Shinozaki K
    Plant Cell Physiol; 1997 Oct; 38(10):1095-102. PubMed ID: 9399433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fasciola gigantica: enzymes of the ornithine-proline-glutamate pathway--characterization of delta1-pyrroline-5-carboxylate dehydrogenase.
    Mohamed SA; Mohamed TM; Fahmy AS; El-Badry MO; Abdel-Gany SS
    Exp Parasitol; 2008 Jan; 118(1):47-53. PubMed ID: 17655846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proline metabolism and biosynthesis behave differently in response to boron-deficiency and toxicity in Brassica napus.
    Yan L; Li S; Riaz M; Jiang C
    Plant Physiol Biochem; 2021 Oct; 167():529-540. PubMed ID: 34425397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of human pyrroline-5-carboxylate reductase.
    Meng Z; Lou Z; Liu Z; Li M; Zhao X; Bartlam M; Rao Z
    J Mol Biol; 2006 Jun; 359(5):1364-77. PubMed ID: 16730026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isozymes of P5C reductase (PYCR) in human diseases: focus on cancer.
    Hu CA
    Amino Acids; 2021 Dec; 53(12):1835-1840. PubMed ID: 34291342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation.
    Fichman Y; Gerdes SY; Kovács H; Szabados L; Zilberstein A; Csonka LN
    Biol Rev Camb Philos Soc; 2015 Nov; 90(4):1065-99. PubMed ID: 25367752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification, characterization, and crystallization of human pyrroline-5-carboxylate reductase.
    Meng Z; Lou Z; Liu Z; Hui D; Bartlam M; Rao Z
    Protein Expr Purif; 2006 Sep; 49(1):83-7. PubMed ID: 16600630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrroline-5-Carboxylate Reductase in Chlorella autotrophica and Chlorella saccharophila in Relation to Osmoregulation.
    Laliberté G; Hellebust JA
    Plant Physiol; 1989 Nov; 91(3):917-23. PubMed ID: 16667157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.