These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 26284089)
41. Elevated Accumulation of Proline in NaCl-Adapted Tobacco Cells Is Not Due to Altered Delta-Pyrroline-5-Carboxylate Reductase. Larosa PC; Rhodes D; Rhodes JC; Bressan RA; Csonka LN Plant Physiol; 1991 May; 96(1):245-50. PubMed ID: 16668159 [TBL] [Abstract][Full Text] [Related]
42. Transfer of reducing equivalents into mitochondria by the interconversions of proline and delta 1-pyrroline-5-carboxylate. Hagedorn CH; Phang JM Arch Biochem Biophys; 1983 Aug; 225(1):95-101. PubMed ID: 6688511 [TBL] [Abstract][Full Text] [Related]
43. Proline metabolism in N2-fixing root nodules: energy transfer and regulation of purine synthesis. Kohl DH; Schubert KR; Carter MB; Hagedorn CH; Shearer G Proc Natl Acad Sci U S A; 1988 Apr; 85(7):2036-40. PubMed ID: 3353366 [TBL] [Abstract][Full Text] [Related]
44. Regional distribution in rat brain of 1-pyrroline-5-carboxylate dehydrogenase and its localization to specific glial cells. Thompson SG; Wong PT; Leong SF; McGeer EG J Neurochem; 1985 Dec; 45(6):1791-6. PubMed ID: 2865333 [TBL] [Abstract][Full Text] [Related]
45. Subcellular location of delta-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean. Szoke A; Miao GH; Hong Z; Verma DP Plant Physiol; 1992 Aug; 99(4):1642-9. PubMed ID: 16669085 [TBL] [Abstract][Full Text] [Related]
46. The role of proline in osmoregulation in Phytophthora nicotianae. Ambikapathy J; Marshall JS; Hocart CH; Hardham AR Fungal Genet Biol; 2002 Apr; 35(3):287-99. PubMed ID: 11929217 [TBL] [Abstract][Full Text] [Related]
47. Genetic evidence for a common enzyme catalyzing the second step in the degradation of proline and hydroxyproline. Valle D; Goodman SI; Harris SC; Phang JM J Clin Invest; 1979 Nov; 64(5):1365-70. PubMed ID: 500817 [TBL] [Abstract][Full Text] [Related]
48. L-Proline nutrition and catabolism in Staphylococcus saprophyticus. Deutch CE Antonie Van Leeuwenhoek; 2011 May; 99(4):781-93. PubMed ID: 21253822 [TBL] [Abstract][Full Text] [Related]
49. Proline biosynthesis from L-ornithine in Clostridium sticklandii: purification of delta1-pyrroline-5-carboxylate reductase, and sequence and expression of the encoding gene, proC. Kenklies J; Ziehn R; Fritsche K; Pich A; Andreesen JR Microbiology (Reading); 1999 Apr; 145 ( Pt 4)():819-826. PubMed ID: 10220161 [TBL] [Abstract][Full Text] [Related]
50. Purification and characterization of rat lens pyrroline-5-carboxylate reductase. Shiono T; Kador PF; Kinoshita JJ Biochim Biophys Acta; 1986 Mar; 881(1):72-8. PubMed ID: 3753884 [TBL] [Abstract][Full Text] [Related]
51. A soybean gene encoding delta 1-pyrroline-5-carboxylate reductase was isolated by functional complementation in Escherichia coli and is found to be osmoregulated. Delauney AJ; Verma DP Mol Gen Genet; 1990 May; 221(3):299-305. PubMed ID: 2199815 [TBL] [Abstract][Full Text] [Related]
52. Proline biosynthesis genes and their regulation under salinity stress in the euryhaline copepod Tigriopus californicus. Willett CS; Burton RS Comp Biochem Physiol B Biochem Mol Biol; 2002 Aug; 132(4):739-50. PubMed ID: 12128060 [TBL] [Abstract][Full Text] [Related]
53. Ornithine delta-aminotransferase: An enzyme implicated in salt tolerance in higher plants. Stránská J; Kopecný D; Tylichová M; Snégaroff J; Sebela M Plant Signal Behav; 2008 Nov; 3(11):929-35. PubMed ID: 19513195 [TBL] [Abstract][Full Text] [Related]
54. Calcium-mediated responses and glutamine synthetase expression in greater duckweed (Spirodela polyrhiza L.) under diethyl phthalate-induced stress. Cheng LJ; Hung MJ; Cheng YI; Cheng TS Aquat Toxicol; 2013 Nov; 144-145():124-32. PubMed ID: 24177215 [TBL] [Abstract][Full Text] [Related]
55. Catalytic transfer of hydride ions from NADPH to oxygen by the interconversions of proline and delta 1-pyrroline-5-carboxylate. Hagedorn CH; Phang JM Arch Biochem Biophys; 1986 Jul; 248(1):166-74. PubMed ID: 3729412 [TBL] [Abstract][Full Text] [Related]
56. Plant P5C reductase as a new target for aminomethylenebisphosphonates. Forlani G; Giberti S; Berlicki L; Petrollino D; Kafarski P J Agric Food Chem; 2007 May; 55(11):4340-7. PubMed ID: 17474756 [TBL] [Abstract][Full Text] [Related]
57. Characterization of the proline-utilization pathway in Mycobacterium tuberculosis through structural and functional studies. Lagautriere T; Bashiri G; Paterson NG; Berney M; Cook GM; Baker EN Acta Crystallogr D Biol Crystallogr; 2014 Apr; 70(Pt 4):968-80. PubMed ID: 24699642 [TBL] [Abstract][Full Text] [Related]
58. Correlation between the induction of a gene for delta 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Yoshiba Y; Kiyosue T; Katagiri T; Ueda H; Mizoguchi T; Yamaguchi-Shinozaki K; Wada K; Harada Y; Shinozaki K Plant J; 1995 May; 7(5):751-60. PubMed ID: 7773306 [TBL] [Abstract][Full Text] [Related]
59. Stimulation of the hexose monophosphate pathway by pyrroline-5-carboxylate reductase in the lens. Shiono T; Kador PF; Kinoshita JH Exp Eye Res; 1985 Dec; 41(6):767-75. PubMed ID: 3841659 [TBL] [Abstract][Full Text] [Related]
60. Possible involvement of a L-delta 1-pyrroline-5-carboxylate (P5C) reductase in the synthesis of proline in Desulfovibrio desulfuricans Norway. Fons M; Cami B; Chippaux M Biochem Biophys Res Commun; 1991 Sep; 179(2):1088-94. PubMed ID: 1898390 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]