BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26284170)

  • 1. Analysis of Fundus Fluorescein Angiogram Based on the Hessian Matrix of Directional Curvelet Sub-bands and Distance Regularized Level Set Evolution.
    Soltanipour A; Sadri S; Rabbani H; Akhlaghi MR
    J Med Signals Sens; 2015; 5(3):141-55. PubMed ID: 26284170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images.
    Marin D; Gegundez-Arias ME; Suero A; Bravo JM
    Comput Methods Programs Biomed; 2015 Feb; 118(2):173-85. PubMed ID: 25433912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images.
    Roychowdhury S; Koozekanani DD; Kuchinka SN; Parhi KK
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1562-1574. PubMed ID: 26316237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optic disc detection from normalized digital fundus images by means of a vessels' direction matched filter.
    Youssif AR; Ghalwash AZ; Ghoneim AR
    IEEE Trans Med Imaging; 2008 Jan; 27(1):11-8. PubMed ID: 18270057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets.
    Yu H; Barriga ES; Agurto C; Echegaray S; Pattichis MS; Bauman W; Soliz P
    IEEE Trans Inf Technol Biomed; 2012 Jul; 16(4):644-57. PubMed ID: 22588616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Automatic detection of vessels in color fundus images].
    Jiménez S; Alemany P; Fondón I; Foncubierta A; Acha B; Serrano C
    Arch Soc Esp Oftalmol; 2010 Mar; 85(3):103-9. PubMed ID: 20619121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-path cascaded U-net for vessel segmentation from fundus fluorescein angiography sequential images.
    Sun G; Liu X; Yu X
    Comput Methods Programs Biomed; 2021 Nov; 211():106422. PubMed ID: 34598080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast and automatic algorithm for optic disc extraction in retinal images using principle-component-analysis-based preprocessing and curvelet transform.
    Shahbeig S; Pourghassem H
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jan; 30(1):13-21. PubMed ID: 23455998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of morphological bit planes in retinal blood vessel extraction.
    Fraz MM; Basit A; Barman SA
    J Digit Imaging; 2013 Apr; 26(2):274-86. PubMed ID: 22832895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optic cup segmentation: type-II fuzzy thresholding approach and blood vessel extraction.
    Almazroa A; Alodhayb S; Raahemifar K; Lakshminarayanan V
    Clin Ophthalmol; 2017; 11():841-854. PubMed ID: 28515636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction.
    Miri MS; Mahloojifar A
    IEEE Trans Biomed Eng; 2011 May; 58(5):1183-92. PubMed ID: 21147592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An approach to localize the retinal blood vessels using bit planes and centerline detection.
    Fraz MM; Barman SA; Remagnino P; Hoppe A; Basit A; Uyyanonvara B; Rudnicka AR; Owen CG
    Comput Methods Programs Biomed; 2012 Nov; 108(2):600-16. PubMed ID: 21963241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vessel extraction from non-fluorescein fundus images using orientation-aware detector.
    Yin B; Li H; Sheng B; Hou X; Chen Y; Wu W; Li P; Shen R; Bao Y; Jia W
    Med Image Anal; 2015 Dec; 26(1):232-42. PubMed ID: 26474120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood vessel extraction and optic disc removal using curvelet transform and kernel fuzzy c-means.
    Kar SS; Maity SP
    Comput Biol Med; 2016 Mar; 70():174-189. PubMed ID: 26848729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic optic disc localization and segmentation in retinal images by a line operator and level sets.
    Ren F; Li W; Yang J; Geng H; Zhao D
    Technol Health Care; 2016 Apr; 24 Suppl 2():S767-76. PubMed ID: 27198460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmenting retinal vessels with revised top-bottom-hat transformation and flattening of minimum circumscribed ellipse.
    Wang W; Wang W; Hu Z
    Med Biol Eng Comput; 2019 Jul; 57(7):1481-1496. PubMed ID: 30903529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic optic disk detection in retinal images using hybrid vessel phase portrait analysis.
    Muangnak N; Aimmanee P; Makhanov S
    Med Biol Eng Comput; 2018 Apr; 56(4):583-598. PubMed ID: 28836125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A self-adaptive distance regularized level set evolution method for optical disk segmentation.
    Wu H; Geng X; Zhang X; Qiu M; Jiang K; Tang L; Dong J
    Biomed Mater Eng; 2014; 24(6):3199-206. PubMed ID: 25227028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation.
    Mookiah MR; Acharya UR; Chua CK; Min LC; Ng EY; Mushrif MM; Laude A
    Proc Inst Mech Eng H; 2013 Jan; 227(1):37-49. PubMed ID: 23516954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of retinal capillary nonperfusion in fundus fluorescein angiogram of diabetic retinopathy.
    Rasta SH; Nikfarjam S; Javadzadeh A
    Bioimpacts; 2015; 5(4):183-90. PubMed ID: 26929922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.