These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26284170)

  • 41. Novel Accurate and Fast Optic Disc Detection in Retinal Images With Vessel Distribution and Directional Characteristics.
    Zhang D; Zhao Y
    IEEE J Biomed Health Inform; 2016 Jan; 20(1):333-42. PubMed ID: 25361515
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Blood vessel segmentation in color fundus images based on regional and Hessian features.
    Shah SAA; Tang TB; Faye I; Laude A
    Graefes Arch Clin Exp Ophthalmol; 2017 Aug; 255(8):1525-1533. PubMed ID: 28474130
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Directional fast-marching and multi-model strategy to extract coronary artery centerlines.
    Jia D; Zhuang X
    Comput Biol Med; 2019 May; 108():67-77. PubMed ID: 31003181
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A multimodal registration algorithm of eye fundus images using vessels detection and Hough transform.
    Zana F; Klein JC
    IEEE Trans Med Imaging; 1999 May; 18(5):419-28. PubMed ID: 10416803
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Segmentation of the blood vessels and optic disk in retinal images.
    Salazar-Gonzalez A; Kaba D; Li Y; Liu X
    IEEE J Biomed Health Inform; 2014 Nov; 18(6):1874-86. PubMed ID: 25265617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Retinal vessel segmentation using a multi-scale medialness function.
    Moghimirad E; Hamid Rezatofighi S; Soltanian-Zadeh H
    Comput Biol Med; 2012 Jan; 42(1):50-60. PubMed ID: 22099700
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantitative Comparison Between Optical Coherence Tomography Angiography and Fundus Fluorescein Angiography Images: Effect of Vessel Enhancement.
    Mochi T; Anegondi N; Girish M; Jayadev C; Sinha Roy A
    Ophthalmic Surg Lasers Imaging Retina; 2018 Nov; 49(11):e175-e181. PubMed ID: 30457653
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optic Disc Localization Using Directional Models.
    Xiangqian Wu ; Baisheng Dai ; Wei Bu
    IEEE Trans Image Process; 2016 Sep; 25(9):4433-4442. PubMed ID: 27416600
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Retinal vessel extraction by combining radial symmetry transform and iterated graph cuts.
    Xiang D; Tian J; Deng K; Zhang X; Yang F; Wan X
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3950-3. PubMed ID: 22255204
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Iterative Vessel Segmentation of Fundus Images.
    Roychowdhury S; Koozekanani DD; Parhi KK
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1738-49. PubMed ID: 25700436
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Level Sets for Retinal Vasculature Segmentation Using Seeds from Ridges and Edges from Phase Maps.
    Dizdaroğlu B; Ataer-Cansizoglu E; Kalpathy-Cramer J; Keck K; Chiang MF; Erdogmus D
    IEEE Int Workshop Mach Learn Signal Process; 2012; ():1-6. PubMed ID: 24975694
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs.
    Niemeijer M; Xu X; Dumitrescu AV; Gupta P; van Ginneken B; Folk JC; Abramoff MD
    IEEE Trans Med Imaging; 2011 Nov; 30(11):1941-50. PubMed ID: 21690008
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Automatic optic disc detection in colour fundus images by means of multispectral analysis and information content.
    Martinez-Perez ME; Witt N; Parker KH; Hughes AD; Thom SAM
    PeerJ; 2019; 7():e7119. PubMed ID: 31293825
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DR HAGIS-a fundus image database for the automatic extraction of retinal surface vessels from diabetic patients.
    Holm S; Russell G; Nourrit V; McLoughlin N
    J Med Imaging (Bellingham); 2017 Jan; 4(1):014503. PubMed ID: 28217714
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A vessel segmentation method for multi-modality angiographic images based on multi-scale filtering and statistical models.
    Lu P; Xia J; Li Z; Xiong J; Yang J; Zhou S; Wang L; Chen M; Wang C
    Biomed Eng Online; 2016 Nov; 15(1):120. PubMed ID: 27825346
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images.
    Köse C; Sevik U; Ikibaş C; Erdöl H
    Comput Methods Programs Biomed; 2012 Aug; 107(2):274-93. PubMed ID: 21757250
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Multi-Scale Directional Line Detector for Retinal Vessel Segmentation.
    Khawaja A; Khan TM; Khan MAU; Nawaz SJ
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31766276
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automatic extraction of blood vessels in the retinal vascular tree using multiscale medialness.
    Ben Abdallah M; Malek J; Azar AT; Montesinos P; Belmabrouk H; Esclarín Monreal J; Krissian K
    Int J Biomed Imaging; 2015; 2015():519024. PubMed ID: 25977682
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A region growing and local adaptive thresholding-based optic disc detection.
    Khan TM; Mehmood M; Naqvi SS; Butt MFU
    PLoS One; 2020; 15(1):e0227566. PubMed ID: 31999720
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [A new approach for studying the retinal and choroidal circulation].
    Yoneya S
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):836-61; discussion 862. PubMed ID: 15656089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.