These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 26284282)

  • 1. Response to Role of Epithelial Sodium Channels in the Renal Myogenic Response?
    Guan Z; Pollock JS; Cook AK; Hobbs JL; Inscho EW
    Hypertension; 2010 Feb; 55(2):e8-9. PubMed ID: 26284282
    [No Abstract]   [Full Text] [Related]  

  • 2. Response to Role of Epithelial Sodium Channels in the Renal Myogenic Response?
    Drummond H
    Hypertension; 2010 Feb; 55(2):e7. PubMed ID: 26284281
    [No Abstract]   [Full Text] [Related]  

  • 3. Role of epithelial sodium channels in the renal myogenic response?
    Loutzenhiser R; Aaronson PI
    Hypertension; 2010 Feb; 55(2):e6. PubMed ID: 20038743
    [No Abstract]   [Full Text] [Related]  

  • 4. Inhibition of vascular smooth muscle inward-rectifier K
    Tykocki NR; Bonev AD; Longden TA; Heppner TJ; Nelson MT
    Am J Physiol Renal Physiol; 2017 May; 312(5):F836-F847. PubMed ID: 28148533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic ablation of CaV3.2 channels enhances the arterial myogenic response by modulating the RyR-BKCa axis.
    Harraz OF; Brett SE; Zechariah A; Romero M; Puglisi JL; Wilson SM; Welsh DG
    Arterioscler Thromb Vasc Biol; 2015 Aug; 35(8):1843-51. PubMed ID: 26069238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanosensitive cation channels mediate afferent arteriolar myogenic constriction in the isolated rat kidney.
    Takenaka T; Suzuki H; Okada H; Hayashi K; Kanno Y; Saruta T
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):245-53. PubMed ID: 9679178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Juvenile growth reduces the influence of epithelial sodium channels on myogenic tone in skeletal muscle arterioles.
    Kang LS; Masilamani S; Boegehold MA
    Clin Exp Pharmacol Physiol; 2016 Dec; 43(12):1199-1207. PubMed ID: 27560463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vanilloid receptor TRPV1, sensory C-fibers, and vascular autoregulation: a novel mechanism involved in myogenic constriction.
    Scotland RS; Chauhan S; Davis C; De Felipe C; Hunt S; Kabir J; Kotsonis P; Oh U; Ahluwalia A
    Circ Res; 2004 Nov; 95(10):1027-34. PubMed ID: 15499026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine.
    Virsolvy A; Farah C; Pertuit N; Kong L; Lacampagne A; Reboul C; Aimond F; Richard S
    Sci Rep; 2015 Dec; 5():17969. PubMed ID: 26655634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of superoxide and hydrogen peroxide on myogenic signaling, membrane potential, and contractions of mouse renal afferent arterioles.
    Li L; Lai EY; Wellstein A; Welch WJ; Wilcox CS
    Am J Physiol Renal Physiol; 2016 Jun; 310(11):F1197-205. PubMed ID: 27053691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory actions of various vasorelaxants on the myogenic contraction induced by quick stretch studied in canine cerebral artery.
    Tanaka Y; Shigenobu K; Nakayama K
    Eur J Pharmacol; 1998 Sep; 356(2-3):225-30. PubMed ID: 9774253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered myogenic vasoconstriction and regulation of whole kidney blood flow in the ASIC2 knockout mouse.
    Gannon KP; McKey SE; Stec DE; Drummond HA
    Am J Physiol Renal Physiol; 2015 Feb; 308(4):F339-48. PubMed ID: 25520010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myogenic tone is impaired at low arterial pressure in mice deficient in the low-voltage-activated CaV 3.1 T-type Ca(2+) channel.
    Björling K; Morita H; Olsen MF; Prodan A; Hansen PB; Lory P; Holstein-Rathlou NH; Jensen LJ
    Acta Physiol (Oxf); 2013 Apr; 207(4):709-20. PubMed ID: 23356724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cysteinyl leukotriene 1 receptors as novel mechanosensors mediating myogenic tone together with angiotensin II type 1 receptors-brief report.
    Storch U; Blodow S; Gudermann T; Mederos Y Schnitzler M
    Arterioscler Thromb Vasc Biol; 2015 Jan; 35(1):121-6. PubMed ID: 25395620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in basal protein kinase C activity modulate renal afferent arteriolar myogenic reactivity.
    Kirton CA; Loutzenhiser R
    Am J Physiol; 1998 Aug; 275(2):H467-75. PubMed ID: 9683434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular reactivity and calcium-entry blockers.
    Van Nueten JM; De Clerck F
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():575-83. PubMed ID: 6233852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated K+ channel activity opposes vasoconstrictor response to serotonin in cerebral arteries of the Fawn Hooded Hypertensive rat.
    Pabbidi MR; Roman RJ
    Physiol Genomics; 2017 Jan; 49(1):27-36. PubMed ID: 27789734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-entry blockers, vascular smooth muscle and systemic hypertension.
    Vanhoutte PM
    Am J Cardiol; 1985 Jan; 55(3):17B-23B. PubMed ID: 3881910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. alpha(4)beta(1) Integrin activation of L-type calcium channels in vascular smooth muscle causes arteriole vasoconstriction.
    Waitkus-Edwards KR; Martinez-Lemus LA; Wu X; Trzeciakowski JP; Davis MJ; Davis GE; Meininger GA
    Circ Res; 2002 Mar; 90(4):473-80. PubMed ID: 11884378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swelling-activated cation channels mediate depolarization of rat cerebrovascular smooth muscle by hyposmolarity and intravascular pressure.
    Welsh DG; Nelson MT; Eckman DM; Brayden JE
    J Physiol; 2000 Aug; 527 Pt 1(Pt 1):139-48. PubMed ID: 10944177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.