These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26284891)

  • 1. Aggregate structure, morphology and the effect of aggregation mechanisms on viscosity at elevated protein concentrations.
    Barnett GV; Qi W; Amin S; Neil Lewis E; Roberts CJ
    Biophys Chem; 2015 Dec; 207():21-9. PubMed ID: 26284891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Changes and Aggregation Mechanisms for Anti-Streptavidin IgG1 at Elevated Concentration.
    Barnett GV; Qi W; Amin S; Lewis EN; Razinkov VI; Kerwin BA; Liu Y; Roberts CJ
    J Phys Chem B; 2015 Dec; 119(49):15150-63. PubMed ID: 26563591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-native aggregation of alpha-chymotrypsinogen occurs through nucleation and growth with competing nucleus sizes and negative activation energies.
    Andrews JM; Roberts CJ
    Biochemistry; 2007 Jun; 46(25):7558-71. PubMed ID: 17530865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-variate approach to global protein aggregation behavior and kinetics: effects of pH, NaCl, and temperature for alpha-chymotrypsinogen A.
    Li Y; Ogunnaike BA; Roberts CJ
    J Pharm Sci; 2010 Feb; 99(2):645-62. PubMed ID: 19653264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonnative aggregation of an IgG1 antibody in acidic conditions, part 2: nucleation and growth kinetics with competing growth mechanisms.
    Brummitt RK; Nesta DP; Chang L; Kroetsch AM; Roberts CJ
    J Pharm Sci; 2011 Jun; 100(6):2104-19. PubMed ID: 21213307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of the C191-C220 disulfide of α-chymotrypsinogen A reduces nucleation barriers for aggregation.
    Weiss WF; Zhang A; Ivanova MI; Sahin E; Jordan JL; Fernandez EJ; Roberts CJ
    Biophys Chem; 2014 Jan; 185():79-87. PubMed ID: 24374388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonnative aggregation of an IgG1 antibody in acidic conditions: part 1. Unfolding, colloidal interactions, and formation of high-molecular-weight aggregates.
    Brummitt RK; Nesta DP; Chang L; Chase SF; Laue TM; Roberts CJ
    J Pharm Sci; 2011 Jun; 100(6):2087-103. PubMed ID: 21213308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relating particle formation to salt- and pH-dependent phase separation of non-native aggregates of alpha-chymotrypsinogen A.
    Kroetsch AM; Sahin E; Wang HY; Krizman S; Roberts CJ
    J Pharm Sci; 2012 Oct; 101(10):3651-60. PubMed ID: 22806414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel chromatography and in situ scattering to interrogate competing protein aggregation pathways.
    Gomes D; Kalman RK; Pagels RK; Rodrigues MA; Roberts CJ
    Protein Sci; 2018 Jul; 27(7):1325-1333. PubMed ID: 29717515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of Monoclonal Antibody Aggregation from Dilute toward Concentrated Conditions.
    Nicoud L; Jagielski J; Pfister D; Lazzari S; Massant J; Lattuada M; Morbidelli M
    J Phys Chem B; 2016 Apr; 120(13):3267-80. PubMed ID: 27007829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregates of α-chymotrypsinogen anneal to access more stable states.
    Maurer RW; Hunter AK; Robinson AS; Roberts CJ
    Biotechnol Bioeng; 2014 Apr; 111(4):782-91. PubMed ID: 24122552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of amyloid dissociation provide insights into aggregate stability regimes.
    Brummitt RK; Andrews JM; Jordan JL; Fernandez EJ; Roberts CJ
    Biophys Chem; 2012 Jul; 168-169():10-8. PubMed ID: 22750559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular level insights into thermally induced α-chymotrypsinogen A amyloid aggregation mechanism and semiflexible protofibril morphology.
    Zhang A; Jordan JL; Ivanova MI; Weiss WF; Roberts CJ; Fernandez EJ
    Biochemistry; 2010 Dec; 49(49):10553-64. PubMed ID: 21067192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of aggregate formation on the viscosity of protein solutions.
    Nicoud L; Lattuada M; Yates A; Morbidelli M
    Soft Matter; 2015 Jul; 11(27):5513-22. PubMed ID: 26061258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of high-molecular-weight nonnative aggregates and aggregation kinetics by size exclusion chromatography with inline multi-angle laser light scattering.
    Li Y; Weiss WF; Roberts CJ
    J Pharm Sci; 2009 Nov; 98(11):3997-4016. PubMed ID: 19283773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonnative protein polymers: structure, morphology, and relation to nucleation and growth.
    Weiss WF; Hodgdon TK; Kaler EW; Lenhoff AM; Roberts CJ
    Biophys J; 2007 Dec; 93(12):4392-403. PubMed ID: 17704182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salt effects on aggregation of O-carboxymethylchitosan in aqueous solution.
    Zhu A; Dai S; Li L; Zhao F
    Colloids Surf B Biointerfaces; 2006 Jan; 47(1):20-8. PubMed ID: 16387481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quaternary conformational stability: the effect of reversible self-association on the fibrillation of two insulin analogs.
    Ludwig DB; Webb JN; Fernández C; Carpenter JF; Randolph TW
    Biotechnol Bioeng; 2011 Oct; 108(10):2359-70. PubMed ID: 21520027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Aggregation on the Hydrodynamic Properties of Bovine Serum Albumin.
    Pindrus MA; Cole JL; Kaur J; Shire SJ; Yadav S; Kalonia DS
    Pharm Res; 2017 Nov; 34(11):2250-2259. PubMed ID: 28752485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Counteracting effects of thiocyanate and sucrose on chymotrypsinogen secondary structure and aggregation during freezing, drying, and rehydration.
    Allison SD; Dong A; Carpenter JF
    Biophys J; 1996 Oct; 71(4):2022-32. PubMed ID: 8889176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.