These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 26284895)
21. Assessing anthropogenic impacts on riverine ecosystems using nested partial least squares regression. Ferreira ARL; Sanches Fernandes LF; Cortes RMV; Pacheco FAL Sci Total Environ; 2017 Apr; 583():466-477. PubMed ID: 28119006 [TBL] [Abstract][Full Text] [Related]
22. Nitrate concentrations in river waters of the upper Thames and its tributaries. Neal C; Jarvie HP; Neal M; Hill L; Wickham H Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496 [TBL] [Abstract][Full Text] [Related]
23. Soil water nitrate and ammonium dynamics under a sewage effluent irrigated eucalypt plantation. Livesley SJ; Adams MA; Grierson PF J Environ Qual; 2007; 36(6):1883-94. PubMed ID: 17965391 [TBL] [Abstract][Full Text] [Related]
24. Using (137)Cs and (210)Pbex and other sediment source fingerprints to document suspended sediment sources in small forested catchments in south-central Chile. Schuller P; Walling DE; Iroumé A; Quilodrán C; Castillo A; Navas A J Environ Radioact; 2013 Oct; 124():147-59. PubMed ID: 23774637 [TBL] [Abstract][Full Text] [Related]
25. Effects of watershed-scale land use change on stream nitrate concentrations. Schilling KE; Spooner J J Environ Qual; 2006; 35(6):2132-45. PubMed ID: 17071882 [TBL] [Abstract][Full Text] [Related]
26. Cation export by overland flow in a recently burnt forest area in north-central Portugal. Machado AI; Serpa D; Ferreira RV; Rodríguez-Blanco ML; Pinto R; Nunes MI; Cerqueira MA; Keizer JJ Sci Total Environ; 2015 Aug; 524-525():201-12. PubMed ID: 25897728 [TBL] [Abstract][Full Text] [Related]
27. An integrated pressure and pathway approach to the spatial analysis of groundwater nitrate: a case study from the southeast of Ireland. Tedd KM; Coxon CE; Misstear BD; Daly D; Craig M; Mannix A; Williams NH Sci Total Environ; 2014 Apr; 476-477():460-76. PubMed ID: 24486501 [TBL] [Abstract][Full Text] [Related]
28. Coniferous coverage as well as catchment steepness influences local stream nitrate concentrations within a nitrogen-saturated forest in central Japan. Watanabe M; Miura S; Hasegawa S; Koshikawa MK; Takamatsu T; Kohzu A; Imai A; Hayashi S Sci Total Environ; 2018 Sep; 636():539-546. PubMed ID: 29715658 [TBL] [Abstract][Full Text] [Related]
29. Estimates of diffuse phosphorus sources in surface waters of the United States using a spatially referenced watershed model. Alexander RB; Smith RA; Schwarz GE Water Sci Technol; 2004; 49(3):1-10. PubMed ID: 15053093 [TBL] [Abstract][Full Text] [Related]
30. Assessing nitrification and denitrification in a paddy soil with different water dynamics and applied liquid cattle waste using the ¹⁵N isotopic technique. Zhou S; Sakiyama Y; Riya S; Song X; Terada A; Hosomi M Sci Total Environ; 2012 Jul; 430():93-100. PubMed ID: 22634555 [TBL] [Abstract][Full Text] [Related]
31. Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain). Rodriguez-Galiano V; Mendes MP; Garcia-Soldado MJ; Chica-Olmo M; Ribeiro L Sci Total Environ; 2014 Apr; 476-477():189-206. PubMed ID: 24463255 [TBL] [Abstract][Full Text] [Related]
32. Optimized allocation of forest restoration zones to minimize soil losses in watersheds. Domingues GF; Marcatti GE; Dos Santos AG; Lorenzon AS; Telles LAA; de Castro NLM; Barros KO; Gonzáles DGE; de Carvalho JR; Gandine SMDS; de Menezes SJMDC; Dos Santos AR; Ribeiro CAAS J Environ Manage; 2020 Oct; 271():110923. PubMed ID: 32778260 [TBL] [Abstract][Full Text] [Related]
33. Multi-isotope ((15)N, (18)O and (13)C) indicators of sources and fate of nitrate in the upper stream of Chaobai River, Beijing, China. Li C; Jiang Y; Guo X; Cao Y; Ji H Environ Sci Process Impacts; 2014 Nov; 16(11):2644-55. PubMed ID: 25283837 [TBL] [Abstract][Full Text] [Related]
35. Identifying critical nitrogen application rate for maize yield and nitrate leaching in a Haplic Luvisol soil using the DNDC model. Zhang Y; Wang H; Liu S; Lei Q; Liu J; He J; Zhai L; Ren T; Liu H Sci Total Environ; 2015 May; 514():388-98. PubMed ID: 25681775 [TBL] [Abstract][Full Text] [Related]
36. Computation and visualization of regional-scale forest disturbance and associated dissolved nitrogen export from Shenandoah National Park, Virginia. Eshleman KN; Fiscus DA; Castro NM; Webb JR; Deviney JF ScientificWorldJournal; 2001 Dec; 1 Suppl 2():539-47. PubMed ID: 12805752 [TBL] [Abstract][Full Text] [Related]
37. A structural equation model to predict macroinvertebrate-based ecological status in catchments influenced by anthropogenic pressures. Fernandes ACP; Sanches Fernandes LF; Moura JP; Cortes RMV; Pacheco FAL Sci Total Environ; 2019 Sep; 681():242-257. PubMed ID: 31103662 [TBL] [Abstract][Full Text] [Related]
38. Characterisation of diffuse pollutions from forested watersheds in Japan during storm events - its association with rainfall and watershed features. Zhang Z; Fukushima T; Onda Y; Mizugaki S; Gomi T; Kosugi K; Hiramatsu S; Kitahara H; Kuraji K; Terajima T; Matsushige K; Tao F Sci Total Environ; 2008 Feb; 390(1):215-26. PubMed ID: 18022217 [TBL] [Abstract][Full Text] [Related]
39. Hydrogeologic controls on the transport and fate of nitrate in ground water beneath riparian buffer zones: results from thirteen studies across the United States. Puckett LJ Water Sci Technol; 2004; 49(3):47-53. PubMed ID: 15053098 [TBL] [Abstract][Full Text] [Related]
40. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed. Grimm JW; Lynch JA Environ Pollut; 2005 Jun; 135(3):445-55. PubMed ID: 15749542 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]