BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 26285006)

  • 1. Sleep-Dependent Potentiation in the Visual System Is at Odds with the Synaptic Homeostasis Hypothesis.
    Durkin J; Aton SJ
    Sleep; 2016 Jan; 39(1):155-9. PubMed ID: 26285006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep Promotes, and Sleep Loss Inhibits, Selective Changes in Firing Rate, Response Properties and Functional Connectivity of Primary Visual Cortex Neurons.
    Clawson BC; Durkin J; Suresh AK; Pickup EJ; Broussard CG; Aton SJ
    Front Syst Neurosci; 2018; 12():40. PubMed ID: 30245617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep promotes cortical response potentiation following visual experience.
    Aton SJ; Suresh A; Broussard C; Frank MG
    Sleep; 2014 Jul; 37(7):1163-70. PubMed ID: 25061244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortically coordinated NREM thalamocortical oscillations play an essential, instructive role in visual system plasticity.
    Durkin J; Suresh AK; Colbath J; Broussard C; Wu J; Zochowski M; Aton SJ
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):10485-10490. PubMed ID: 28893999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic Homeostasis and Restructuring across the Sleep-Wake Cycle.
    Blanco W; Pereira CM; Cota VR; Souza AC; Rennó-Costa C; Santos S; Dias G; Guerreiro AM; Tort AB; Neto AD; Ribeiro S
    PLoS Comput Biol; 2015 May; 11(5):e1004241. PubMed ID: 26020963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.
    Rodriguez AV; Funk CM; Vyazovskiy VV; Nir Y; Tononi G; Cirelli C
    J Neurosci; 2016 Dec; 36(49):12436-12447. PubMed ID: 27927960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sleep enhances plasticity in the developing visual cortex.
    Frank MG; Issa NP; Stryker MP
    Neuron; 2001 Apr; 30(1):275-87. PubMed ID: 11343661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid eye movement sleep deprivation in post-critical period, adolescent rats alters the balance between inhibitory and excitatory mechanisms in visual cortex.
    Shaffery JP; Lopez J; Bissette G; Roffwarg HP
    Neurosci Lett; 2006 Jan; 393(2-3):131-5. PubMed ID: 16236445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal Firing Rate Homeostasis Is Inhibited by Sleep and Promoted by Wake.
    Hengen KB; Torrado Pacheco A; McGregor JN; Van Hooser SD; Turrigiano GG
    Cell; 2016 Mar; 165(1):180-191. PubMed ID: 26997481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleep Promotes Downward Firing Rate Homeostasis.
    Torrado Pacheco A; Bottorff J; Gao Y; Turrigiano GG
    Neuron; 2021 Feb; 109(3):530-544.e6. PubMed ID: 33232655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid eye movement sleep deprivation modifies expression of long-term potentiation in visual cortex of immature rats.
    Shaffery JP; Sinton CM; Bissette G; Roffwarg HP; Marks GA
    Neuroscience; 2002; 110(3):431-43. PubMed ID: 11906784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal models for sleep-wake regulation and synaptic reorganization in the sleeping hippocampus.
    Best J; Diniz Behn C; Poe GR; Booth V
    J Biol Rhythms; 2007 Jun; 22(3):220-32. PubMed ID: 17517912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states.
    Dash MB; Douglas CL; Vyazovskiy VV; Cirelli C; Tononi G
    J Neurosci; 2009 Jan; 29(3):620-9. PubMed ID: 19158289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sleep Deprivation by Exposure to Novel Objects Increases Synapse Density and Axon-Spine Interface in the Hippocampal CA1 Region of Adolescent Mice.
    Spano GM; Banningh SW; Marshall W; de Vivo L; Bellesi M; Loschky SS; Tononi G; Cirelli C
    J Neurosci; 2019 Aug; 39(34):6613-6625. PubMed ID: 31263066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasticity during Sleep Is Linked to Specific Regulation of Cortical Circuit Activity.
    Niethard N; Burgalossi A; Born J
    Front Neural Circuits; 2017; 11():65. PubMed ID: 28966578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced cortical responsiveness during natural sleep in freely behaving mice.
    Matsumoto S; Ohyama K; Díaz J; Yanagisawa M; Greene RW; Vogt KE
    Sci Rep; 2020 Feb; 10(1):2278. PubMed ID: 32042079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Firing rate homeostasis in visual cortex of freely behaving rodents.
    Hengen KB; Lambo ME; Van Hooser SD; Katz DB; Turrigiano GG
    Neuron; 2013 Oct; 80(2):335-42. PubMed ID: 24139038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blockade of postsynaptic activity in sleep inhibits developmental plasticity in visual cortex.
    Frank MG; Jha SK; Coleman T
    Neuroreport; 2006 Sep; 17(13):1459-63. PubMed ID: 16932158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic plasticity along the sleep-wake cycle: implications for epilepsy.
    Romcy-Pereira RN; Leite JP; Garcia-Cairasco N
    Epilepsy Behav; 2009 Jan; 14 Suppl 1():47-53. PubMed ID: 18926929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid eye movement sleep deprivation revives a form of developmentally regulated synaptic plasticity in the visual cortex of post-critical period rats.
    Shaffery JP; Lopez J; Bissette G; Roffwarg HP
    Neurosci Lett; 2006 Jan; 391(3):96-101. PubMed ID: 16154270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.