BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 26285218)

  • 1. An Inductive Power and Data Telemetry Subsystem With Fast Transient Low Dropout Regulator for Biomedical Implants.
    Lin YP; Tang KT
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):435-44. PubMed ID: 26285218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Load-Insensitive Hybrid LSK Back Telemetry System With Slope-Based Demodulation for Inductively Powered Biomedical Devices.
    Lee HS; Ahn J; Kang M; Lee HM
    IEEE Trans Biomed Circuits Syst; 2022 Aug; 16(4):651-663. PubMed ID: 35853074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of dual band power and data telemetry for biomedical implants.
    Guoxing Wang ; Peijun Wang ; Yina Tang ; Wentai Liu
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):208-15. PubMed ID: 23853143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A complete data and power telemetry system utilizing BPSK and LSK signaling for biomedical implants.
    Sonkusale S; Luo Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3216-9. PubMed ID: 19163391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless Low-Power Integrated Basal-Body-Temperature Detection Systems Using Teeth Antennas in the MedRadio Band.
    Yang CL; Zheng GT
    Sensors (Basel); 2015 Nov; 15(11):29467-77. PubMed ID: 26610508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling.
    Gong C; Liu D; Miao Z; Wang W; Li M
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28604610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An 11 μW Sub-pJ/bit Reconfigurable Transceiver for mm-Sized Wireless Implants.
    Yakovlev A; Jang JH; Pivonka D
    IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):175-85. PubMed ID: 25616075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low-power 13.56 MHz RF front-end circuit for implantable biomedical devices.
    Lee SY; Hong JH; Hsieh CH; Liang MC; Kung JY
    IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):256-65. PubMed ID: 23853325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Single-Chip Full-Duplex High Speed Transceiver for Multi-Site Stimulating and Recording Neural Implants.
    Mirbozorgi SA; Bahrami H; Sawan M; Rusch LA; Gosselin B
    IEEE Trans Biomed Circuits Syst; 2016 Jun; 10(3):643-53. PubMed ID: 26469635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Research progress on key technology of power and signal transmission in neuroprosthetic].
    Wang X; Peng C; Liu T; Wang R; Hou W; Zheng X; Zheng E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Oct; 28(5):1040-2, 1051. PubMed ID: 22097279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility Study on Active Back Telemetry and Power Transmission Through an Inductive Link for Millimeter-Sized Biomedical Implants.
    Yeon P; Mirbozorgi SA; Lim J; Ghovanloo M
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1366-1376. PubMed ID: 29293426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A battery-free multichannel digital neural/EMG telemetry system for flying insects.
    Thomas SJ; Harrison RR; Leonardo A; Reynolds MS
    IEEE Trans Biomed Circuits Syst; 2012 Oct; 6(5):424-36. PubMed ID: 23853229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 0.33 nJ/bit IEEE802.15.6/Proprietary MICS/ISM Wireless Transceiver With Scalable Data Rate for Medical Implantable Applications.
    Ba A; Vidojkovic M; Kanda K; Kiyani NF; Lont M; Huang X; Wang X; Zhou C; Liu YH; Ding M; Busze B; Masui S; Hamaminato M; Sato H; Philips K; de Groot H
    IEEE J Biomed Health Inform; 2015 May; 19(3):920-9. PubMed ID: 25807573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A generic miniature multi-feature programmable wireless powering headstage ASIC for implantable biomedical systems.
    Kubendran R; Krishnan H; Manola B; John SW; Chappell WJ; Irazoqui PP
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5617-20. PubMed ID: 22255613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Implementation of Low Power High-Efficient Transceiver for Body Channel Communications.
    Vijayalakshmi S; Nagarajan V
    J Med Syst; 2019 Feb; 43(4):81. PubMed ID: 30788605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Triple-Loop Inductive Power Transmission System for Biomedical Applications.
    Lee B; Kiani M; Ghovanloo M
    IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):138-48. PubMed ID: 25667358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A wireless implantable multichannel microstimulating system-on-a-chip with modular architecture.
    Ghovanloo M; Najafi K
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):449-57. PubMed ID: 17894278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wireless gigabit data telemetry for large-scale neural recording.
    Kuan YC; Lo YK; Kim Y; Chang MC; Liu W
    IEEE J Biomed Health Inform; 2015 May; 19(3):949-57. PubMed ID: 25823050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices.
    Hashemi SS; Sawan M; Savaria Y
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):326-35. PubMed ID: 23853177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wirelessly Powered and Bi-Directional Data Communication System With Adaptive Conversion Chain for Multisite Biomedical Implants Over Single Inductive Link.
    Karimi MJ; Jin M; Zhou Y; Dehollain C; Schmid A
    IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):636-647. PubMed ID: 38285577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.