These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26285639)

  • 1. Electrochemical Surface Potential Due to Classical Point Charge Models Drives Anion Adsorption to the Air-Water Interface.
    Baer MD; Stern AC; Levin Y; Tobias DJ; Mundy CJ
    J Phys Chem Lett; 2012 Jun; 3(11):1565-70. PubMed ID: 26285639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ions at hydrophobic interfaces.
    Levin Y; dos Santos AP
    J Phys Condens Matter; 2014 May; 26(20):203101. PubMed ID: 24769502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous self-energy of ions at the dielectric interface.
    Wang R; Wang ZG
    Phys Rev Lett; 2014 Apr; 112(13):136101. PubMed ID: 24745441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free energy partitioning analysis of the driving forces that determine ion density profiles near the water liquid-vapor interface.
    Arslanargin A; Beck TL
    J Chem Phys; 2012 Mar; 136(10):104503. PubMed ID: 22423844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Surface Potential of the Water-Vapor Interface from Classical Simulations.
    Cendagorta JR; Ichiye T
    J Phys Chem B; 2015 Jul; 119(29):9114-22. PubMed ID: 25714627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Driving forces for adsorption of amphiphilic peptides to the air-water interface.
    Engin O; Villa A; Sayar M; Hess B
    J Phys Chem B; 2010 Sep; 114(34):11093-101. PubMed ID: 20687527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientation-Induced Adsorption of Hydrated Protons at the Air-Water Interface.
    Mamatkulov SI; Allolio C; Netz RR; Bonthuis DJ
    Angew Chem Int Ed Engl; 2017 Dec; 56(50):15846-15851. PubMed ID: 28941066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring chemical speciation at electrified interfaces using detailed continuum models.
    Baskin A; Prendergast D
    J Chem Phys; 2019 Jan; 150(4):041725. PubMed ID: 30709310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion interactions with the air-water interface using a continuum solvent model.
    Duignan TT; Parsons DF; Ninham BW
    J Phys Chem B; 2014 Jul; 118(29):8700-10. PubMed ID: 24984239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profile of the static permittivity tensor of water at interfaces: consequences for capacitance, hydration interaction and ion adsorption.
    Bonthuis DJ; Gekle S; Netz RR
    Langmuir; 2012 May; 28(20):7679-94. PubMed ID: 22414296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong specific hydroxide ion binding at the pristine oil/water and air/water interfaces.
    Creux P; Lachaise J; Graciaa A; Beattie JK; Djerdjev AM
    J Phys Chem B; 2009 Oct; 113(43):14146-50. PubMed ID: 19810695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ions at the water-vapor interface.
    Tamashiro MN; Constantino MA
    J Phys Chem B; 2010 Mar; 114(10):3583-91. PubMed ID: 20166739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio studies of a water layer at transition metal surfaces.
    Vassilev P; van Santen RA; Koper MT
    J Chem Phys; 2005 Feb; 122(5):54701. PubMed ID: 15740340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the mechanisms of ion adsorption to aqueous interfaces: air-water vs. oil-water.
    Devlin SW; Benjamin I; Saykally RJ
    Proc Natl Acad Sci U S A; 2022 Oct; 119(42):e2210857119. PubMed ID: 36215494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing long-range contributions to the charge asymmetry of ion adsorption at the air-water interface.
    Cox SJ; Thorpe DG; Shaffer PR; Geissler PL
    Chem Sci; 2020 Oct; 11(43):11791-11800. PubMed ID: 34094413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of atmospheric oxidants at the air-water interface: solvation and accommodation of OH and O3.
    Vieceli J; Roeselova M; Potter N; Dang LX; Garrett BC; Tobias DJ
    J Phys Chem B; 2005 Aug; 109(33):15876-92. PubMed ID: 16853017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-layer in ionic liquids: paradigm change?
    Kornyshev AA
    J Phys Chem B; 2007 May; 111(20):5545-57. PubMed ID: 17469864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size.
    Parsons DF; Boström M; Lo Nostro P; Ninham BW
    Phys Chem Chem Phys; 2011 Jul; 13(27):12352-67. PubMed ID: 21670834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward a unified picture of the water self-ions at the air-water interface: a density functional theory perspective.
    Baer MD; Kuo IF; Tobias DJ; Mundy CJ
    J Phys Chem B; 2014 Jul; 118(28):8364-72. PubMed ID: 24762096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Anion Adsorption in the Effect of Electrode Potential on Surface Plasmon Resonance Response.
    Laurinavichyute VK; Nizamov S; Mirsky VM
    Chemphyschem; 2017 Jun; 18(12):1552-1560. PubMed ID: 28294502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.