BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26285843)

  • 1. Probing the Low-Lying Electronic States of Cyclobutanetetraone (C4O4) and Its Radical Anion: A Low-Temperature Anion Photoelectron Spectroscopic Approach.
    Guo JC; Hou GL; Li SD; Wang XB
    J Phys Chem Lett; 2012 Feb; 3(3):304-8. PubMed ID: 26285843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An investigation into low-lying electronic states of HCS₂ via threshold photoelectron imaging.
    Qin Z; Cong R; Liu Z; Xie H; Tang Z; Fan H
    J Chem Phys; 2014 Jun; 140(21):214318. PubMed ID: 24908019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic characterization of the ground and low-lying electronic states of Ga2N via anion photoelectron spectroscopy.
    Sheehan SM; Meloni G; Parsons BF; Wehres N; Neumark DM
    J Chem Phys; 2006 Feb; 124(6):64303. PubMed ID: 16483203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gallium oxide and dioxide: investigation of the ground and low-lying electronic states via anion photoelectron spectroscopy.
    Meloni G; Sheehan SM; Neumark DM
    J Chem Phys; 2005 Feb; 122(7):074317. PubMed ID: 15743242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-lying electronic states of cyclopentadienone.
    Khuseynov D; Stanton JF; Sanov A
    J Phys Chem A; 2014 Aug; 118(34):6965-70. PubMed ID: 25093249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoelectron spectroscopic study of the oxyallyl diradical.
    Ichino T; Villano SM; Gianola AJ; Goebbert DJ; Velarde L; Sanov A; Blanksby SJ; Zhou X; Hrovat DA; Borden WT; Lineberger WC
    J Phys Chem A; 2011 Mar; 115(9):1634-49. PubMed ID: 21323385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of the ground and excited states of Al3 and Al3(-). I. 488 nm anion photoelectron spectrum.
    Villalta PW; Leopold DG
    J Chem Phys; 2009 Jan; 130(2):024303. PubMed ID: 19154024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ground state of (CS)4 is different from that of (CO)4: an experimental test of a computational prediction by negative ion photoelectron spectroscopy.
    Zhang J; Hrovat DA; Sun Z; Bao X; Borden WT; Wang XB
    J Phys Chem A; 2013 Aug; 117(33):7841-6. PubMed ID: 23886029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative ion photoelectron spectroscopy confirms the prediction that (CO)5 and (CO)6 each has a singlet ground state.
    Bao X; Hrovat DA; Borden WT; Wang XB
    J Am Chem Soc; 2013 Mar; 135(11):4291-8. PubMed ID: 23445075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the photoelectron velocity-map imaging of lutetium monoxide anion LuO(-).
    Liu Z; Xie H; Li Q; Qin Z; Cong R; Wu X; Tang Z; Fan H
    J Chem Phys; 2014 Jan; 140(3):034312. PubMed ID: 25669384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative Ion Photoelectron Spectroscopy Confirms the Prediction of a Singlet Ground State for the 1,8-Naphthoquinone Diradical.
    Yang Z; Hrovat DA; Hou GL; Borden WT; Wang XB
    J Phys Chem A; 2019 Apr; 123(14):3142-3148. PubMed ID: 30869889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative Ion Photoelectron Spectroscopy Confirms the Prediction of the Relative Energies of the Low-Lying Electronic States of 2,7-Naphthoquinone.
    Yang Z; Hrovat DA; Hou GL; Borden WT; Wang XB
    J Phys Chem A; 2018 May; 122(21):4838-4844. PubMed ID: 29745661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoelectron spectroscopy of higher bromine and iodine oxide anions: electron affinities and electronic structures of BrO(2,3) and IO(2-4) radicals.
    Wen H; Hou GL; Huang W; Govind N; Wang XB
    J Chem Phys; 2011 Nov; 135(18):184309. PubMed ID: 22088067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Study of NbMo and NbMo
    Baudhuin MA; Boopalachandran P; Rajan S; Leopold DG
    J Phys Chem A; 2021 Nov; 125(44):9658-9679. PubMed ID: 34723518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic investigation of Al2N and its anion via negative ion photoelectron spectroscopy.
    Meloni G; Sheehan SM; Parsons BF; Neumark DM
    J Phys Chem A; 2006 Mar; 110(10):3527-32. PubMed ID: 16526632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic states of the quasilinear molecule propargylene (HCCCH) from negative ion photoelectron spectroscopy.
    Osborn DL; Vogelhuber KM; Wren SW; Miller EM; Lu YJ; Case AS; Sheps L; McMahon RJ; Stanton JF; Harding LB; Ruscic B; Lineberger WC
    J Am Chem Soc; 2014 Jul; 136(29):10361-72. PubMed ID: 25009990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrationally resolved photoelectron imaging of Au3H(-).
    Liu Z; Qin Z; Wu X; Xie H; Cong R; Tang Z
    J Phys Chem A; 2014 Feb; 118(6):1031-7. PubMed ID: 24460048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoelectron spectroscopy of the hydroxymethoxide anion, H
    Oliveira AM; Lehman JH; McCoy AB; Lineberger WC
    J Chem Phys; 2016 Sep; 145(12):124317. PubMed ID: 27782682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrationally Resolved Photoelectron Spectroscopy of the Model GFP Chromophore Anion Revealing the Photoexcited S1 State Being Both Vertically and Adiabatically Bound against the Photodetached D0 Continuum.
    Deng SH; Kong XY; Zhang G; Yang Y; Zheng WJ; Sun ZR; Zhang DQ; Wang XB
    J Phys Chem Lett; 2014 Jun; 5(12):2155-9. PubMed ID: 26270508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ground and low-lying excited states of phenoxy, 1-naphthoxy, and 2-naphthoxy radicals via anion photoelectron spectroscopy.
    Kregel SJ; Garand E
    J Chem Phys; 2018 Aug; 149(7):074309. PubMed ID: 30134678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.