These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 26285875)

  • 1. Recollection of How We Came Across the Protein Modification with Amino Acids by Aminoacyl tRNA-Protein Transferase.
    Kaji H; Kaji A
    Methods Mol Biol; 2015; 1337():13-8. PubMed ID: 26285875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recollection of How We Came Across the Protein Modification with Amino Acids by Aminoacyl tRNA-Protein Transferase.
    Kaji H; Kaji A
    Methods Mol Biol; 2023; 2620():15-20. PubMed ID: 37010743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arginyltransferase: A Personal and Historical Perspective.
    Soffer RL
    Methods Mol Biol; 2015; 1337():19-23. PubMed ID: 26285876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein Arginylation: Over 50 Years of Discovery.
    Kashina AS
    Methods Mol Biol; 2015; 1337():1-11. PubMed ID: 26285874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leucyl/Phenylalanyl-tRNA-protein transferase-mediated chemoenzymatic coupling of N-terminal Arg/Lys units in post-translationally processed proteins with non-natural amino acids.
    Taki M; Kuno A; Matoba S; Kobayashi Y; Futami J; Murakami H; Suga H; Taira K; Hasegawa T; Sisido M
    Chembiochem; 2006 Nov; 7(11):1676-9. PubMed ID: 16977663
    [No Abstract]   [Full Text] [Related]  

  • 6. The molecular basis for the post-translational addition of amino acids by L/F transferase in the N-end rule pathway.
    Fung AW; Fahlman RP
    Curr Protein Pept Sci; 2015; 16(2):163-80. PubMed ID: 25692952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying Arginylation for Bottom-Up Proteomics.
    Ebhardt HA
    Methods Mol Biol; 2015; 1337():129-38. PubMed ID: 26285889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. tRNA
    Avcilar-Kucukgoze I; Gamper H; Polte C; Ignatova Z; Kraetzner R; Shtutman M; Hou YM; Dong DW; Kashina A
    Cell Chem Biol; 2020 Jul; 27(7):839-849.e4. PubMed ID: 32553119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Posttranslational arginylation as a global biological regulator.
    Saha S; Kashina A
    Dev Biol; 2011 Oct; 358(1):1-8. PubMed ID: 21784066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-translational protein arginylation in the normal nervous system and in neurodegeneration.
    Galiano MR; Goitea VE; Hallak ME
    J Neurochem; 2016 Aug; 138(4):506-17. PubMed ID: 27318192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-translational arginylation and intracellular proteolysis.
    Bohley P; Kopitz J; Adam G; Rist B; von Appen F; Urban S
    Biomed Biochim Acta; 1991; 50(4-6):343-6. PubMed ID: 1801699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-translational N-terminal Arginylation of Protein Fragments: A Pivotal Portal to Proteolysis.
    Eldeeb MA; Ragheb MA
    Curr Protein Pept Sci; 2018; 19(12):1214-1223. PubMed ID: 30091410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of nonnatural amino acids into proteins.
    Hendrickson TL; de Crécy-Lagard V; Schimmel P
    Annu Rev Biochem; 2004; 73():147-76. PubMed ID: 15189139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial Expression and Purification of Recombinant Arginyltransferase (ATE1) and Arg-tRNA Synthetase (RRS) for Arginylation Assays.
    Wang J; Kashina AS
    Methods Mol Biol; 2015; 1337():67-71. PubMed ID: 26285882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of New Tools for the Studies of Protein Arginylation.
    Kashina AS
    Methods Mol Biol; 2015; 1337():139-45. PubMed ID: 26285890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An alternative mechanism for the catalysis of peptide bond formation by L/F transferase: substrate binding and orientation.
    Fung AW; Ebhardt HA; Abeysundara H; Moore J; Xu Z; Fahlman RP
    J Mol Biol; 2011 Jun; 409(4):617-29. PubMed ID: 21530538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlated Measurement of Endogenous ATE1 Activity on Native Acceptor Proteins in Tissues and Cultured Cells to Detect Cellular Aging.
    Kaji H; Kaji A
    Methods Mol Biol; 2015; 1337():39-48. PubMed ID: 26285879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein arginylation, a global biological regulator that targets actin cytoskeleton and the muscle.
    Kashina A
    Anat Rec (Hoboken); 2014 Sep; 297(9):1630-6. PubMed ID: 25125176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human D-Tyr-tRNA(Tyr) deacylase contributes to the resistance of the cell to D-amino acids.
    Zheng G; Liu W; Gong Y; Yang H; Yin B; Zhu J; Xie Y; Peng X; Qiang B; Yuan J
    Biochem J; 2009 Jan; 417(1):85-94. PubMed ID: 18700836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginyltransferase is an ATP-independent self-regulating enzyme that forms distinct functional complexes in vivo.
    Wang J; Han X; Saha S; Xu T; Rai R; Zhang F; Wolf YI; Wolfson A; Yates JR; Kashina A
    Chem Biol; 2011 Jan; 18(1):121-30. PubMed ID: 21276945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.