These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26285883)

  • 21. Arginyltransferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms.
    Hu RG; Brower CS; Wang H; Davydov IV; Sheng J; Zhou J; Kwon YT; Varshavsky A
    J Biol Chem; 2006 Oct; 281(43):32559-73. PubMed ID: 16943202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Posttranslational arginylation enzyme Ate1 affects DNA mutagenesis by regulating stress response.
    Kumar A; Birnbaum MD; Patel DM; Morgan WM; Singh J; Barrientos A; Zhang F
    Cell Death Dis; 2016 Sep; 7(9):e2378. PubMed ID: 27685622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Liat1, an arginyltransferase-binding protein whose evolution among primates involved changes in the numbers of its 10-residue repeats.
    Brower CS; Rosen CE; Jones RH; Wadas BC; Piatkov KI; Varshavsky A
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):E4936-45. PubMed ID: 25369936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arginyltransferase: A Personal and Historical Perspective.
    Soffer RL
    Methods Mol Biol; 2015; 1337():19-23. PubMed ID: 26285876
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applying Arginylation for Bottom-Up Proteomics.
    Ebhardt HA
    Methods Mol Biol; 2015; 1337():129-38. PubMed ID: 26285889
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The preparation of recombinant arginyltransferase 1 (ATE1) for biophysical characterization.
    Cartwright M; Van V; Smith AT
    Methods Enzymol; 2023; 679():235-254. PubMed ID: 36682863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assaying for Arginyltransferase Activity and Specificity by Peptide Arrays.
    Wang J; Kashina AS
    Methods Mol Biol; 2023; 2620():123-127. PubMed ID: 37010758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global Analysis of Post-Translational Side-Chain Arginylation Using Pan-Arginylation Antibodies.
    MacTaggart B; Shimogawa M; Lougee M; Tang HY; Petersson EJ; Kashina A
    Mol Cell Proteomics; 2023 Nov; 22(11):100664. PubMed ID: 37832787
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The structural basis of tRNA recognition by arginyl-tRNA-protein transferase.
    Abeywansha T; Huang W; Ye X; Nawrocki A; Lan X; Jankowsky E; Taylor DJ; Zhang Y
    Nat Commun; 2023 Apr; 14(1):2232. PubMed ID: 37076488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ablation of Arg-tRNA-protein transferases results in defective neural tube development.
    Kim E; Kim S; Lee JH; Kwon YT; Lee MJ
    BMB Rep; 2016 Aug; 49(8):443-8. PubMed ID: 27345715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assaying the Posttranslational Arginylation of Proteins in Cultured Cells.
    Galiano MR; Hallak ME
    Methods Mol Biol; 2015; 1337():49-58. PubMed ID: 26285880
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduced Arginyltransferase 1 is a driver and a potential prognostic indicator of prostate cancer metastasis.
    Birnbaum MD; Zhao N; Moorthy BT; Patel DM; Kryvenko ON; Heidman L; Kumar A; Morgan WM; Ban Y; Reis IM; Chen X; Gonzalgo ML; Jorda M; Burnstein KL; Zhang F
    Oncogene; 2019 Feb; 38(6):838-851. PubMed ID: 30177837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arginyltransferase ATE1 is targeted to the neuronal growth cones and regulates neurite outgrowth during brain development.
    Wang J; Pavlyk I; Vedula P; Sterling S; Leu NA; Dong DW; Kashina A
    Dev Biol; 2017 Oct; 430(1):41-51. PubMed ID: 28844905
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assaying the Posttranslational Arginylation of Proteins in Cultured Cells.
    Galiano MR; Hallak ME
    Methods Mol Biol; 2023; 2620():51-61. PubMed ID: 37010748
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Posttranslational arginylation as a global biological regulator.
    Saha S; Kashina A
    Dev Biol; 2011 Oct; 358(1):1-8. PubMed ID: 21784066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Target site specificity and in vivo complexity of the mammalian arginylome.
    Wang J; Pejaver VR; Dann GP; Wolf MY; Kellis M; Huang Y; Garcia BA; Radivojac P; Kashina A
    Sci Rep; 2018 Nov; 8(1):16177. PubMed ID: 30385798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assaying Arginylation Activity in Cell Lysates Using a Fluorescent Reporter.
    Kumar A; Zhang F
    Methods Mol Biol; 2023; 2620():71-80. PubMed ID: 37010750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconstitution of the Arginyltransferase (ATE1) Iron-Sulfur Cluster.
    Van V; Smith AT
    Methods Mol Biol; 2023; 2620():209-217. PubMed ID: 37010764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arginyltransferase suppresses cell tumorigenic potential and inversely correlates with metastases in human cancers.
    Rai R; Zhang F; Colavita K; Leu NA; Kurosaka S; Kumar A; Birnbaum MD; Győrffy B; Dong DW; Shtutman M; Kashina A
    Oncogene; 2016 Aug; 35(31):4058-68. PubMed ID: 26686093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of ATE1 Enzyme from Native Mammalian Tissues.
    Kashina AS
    Methods Mol Biol; 2015; 1337():33-7. PubMed ID: 26285878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.