BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26286058)

  • 21. Outstanding MRI contrast with dysprosium phosphate nanoparticles of tuneable size.
    Gómez-González E; Caro C; García-Martín ML; Becerro AI; Ocaña M
    Nanoscale; 2022 Aug; 14(31):11461-11470. PubMed ID: 35904370
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrahigh-field 7-T magnetic resonance carotid vessel wall imaging: initial experience in comparison with 3-T field strength.
    Kröner ES; van Schinkel LD; Versluis MJ; Brouwer NJ; van den Boogaard PJ; van der Wall EE; de Roos A; Webb AG; Siebelink HM; Lamb HJ
    Invest Radiol; 2012 Dec; 47(12):697-704. PubMed ID: 22996317
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size-Tailored Biocompatible FePt Nanoparticles for Dual
    Slabu I; Wiemer K; Steitz J; Liffmann R; Mues B; Eisold S; Caumanns T; Mayer J; Kuhl CK; Schmitz-Rode T; Simon U
    Langmuir; 2019 Aug; 35(32):10424-10434. PubMed ID: 31306025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multifunctional layered gadolinium hydroxide nanoplates for ultrahigh field magnetic resonance imaging, computed tomography and fluorescence bioimaging.
    Wu M; Li L; Yu X; Zhang D; Sun T; Li X; Sun L; Lui S; Huang X; Bi F; Wang H; Zhu H; Gong Q
    J Biomed Nanotechnol; 2014 Dec; 10(12):3620-30. PubMed ID: 26000375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetofluorescent micelles incorporating Dy(III)-DOTA as potential bimodal agents for optical and high field magnetic resonance imaging.
    Harris M; Vander Elst L; Laurent S; Parac-Vogt TN
    Dalton Trans; 2016 Mar; 45(11):4791-801. PubMed ID: 26865457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The issues and tentative solutions for contrast-enhanced magnetic resonance imaging at ultra-high field strength.
    Fries P; Morelli JN; Lux F; Tillement O; Schneider G; Buecker A
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(6):559-73. PubMed ID: 25196203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Encapsulated gadolinium and dysprosium ions within ultra-short carbon nanotubes for MR microscopy at 11.75 and 21.1 T.
    Rosenberg JT; Cisneros BT; Matson M; Sokoll M; Sachi-Kocher A; Bejarano FC; Wilson LJ; Grant SC
    Contrast Media Mol Imaging; 2014; 9(1):92-9. PubMed ID: 24470298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular factors that determine Curie spin relaxation in dysprosium complexes.
    Caravan P; Greenfield MT; Bulte JW
    Magn Reson Med; 2001 Nov; 46(5):917-22. PubMed ID: 11675643
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dysprosium complexes and their micelles as potential bimodal agents for magnetic resonance and optical imaging.
    Debroye E; Laurent S; Vander Elst L; Muller RN; Parac-Vogt TN
    Chemistry; 2013 Nov; 19(47):16019-28. PubMed ID: 24123216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gadolinium complex and phosphorescent probe-modified NaDyF4 nanorods for T1- and T2-weighted MRI/CT/phosphorescence multimodality imaging.
    Zhou J; Lu Z; Shan G; Wang S; Liao Y
    Biomaterials; 2014 Jan; 35(1):368-77. PubMed ID: 24119502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple sclerosis lesions and irreversible brain tissue damage: a comparative ultrahigh-field strength magnetic resonance imaging study.
    Sinnecker T; Mittelstaedt P; Dörr J; Pfueller CF; Harms L; Niendorf T; Paul F; Wuerfel J
    Arch Neurol; 2012 Jun; 69(6):739-45. PubMed ID: 22351849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetic, biocompatible FeCO
    Thangudu S; Yu CC; Lee CL; Liao MC; Su CH
    J Nanobiotechnology; 2022 Mar; 20(1):157. PubMed ID: 35337331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles.
    Yang H; Zhuang Y; Sun Y; Dai A; Shi X; Wu D; Li F; Hu H; Yang S
    Biomaterials; 2011 Jul; 32(20):4584-93. PubMed ID: 21458063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis, Characterizations, and 9.4 Tesla T
    Marasini S; Yue H; Ho SL; Park JA; Kim S; Jung KH; Cha H; Liu S; Tegafaw T; Ahmad MY; Ghazanfari A; Chae KS; Chang Y; Lee GH
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34065511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Promoting high
    Ellis CM; Pellico J; Young LAJ; Miller J; Davis JJ
    J Mater Chem B; 2022 Jan; 10(2):302-305. PubMed ID: 34914815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dysprosium-doped iron oxide nanoparticles boosting spin-spin relaxation: a computational and experimental study.
    Yin J; Xu F; Qu H; Li C; Liu S; Liu L; Shao Y
    Phys Chem Chem Phys; 2019 Jun; 21(22):11883-11891. PubMed ID: 31123740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determining the relaxivity values of protein cage-templated nanoparticles using magnetic resonance imaging.
    Sana B; Lim S
    Methods Mol Biol; 2015; 1252():39-50. PubMed ID: 25358771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthetic antiferromagnetic nanoparticles as potential contrast agents in MRI.
    Van Roosbroeck R; Van Roy W; Stakenborg T; Trekker J; D'Hollander A; Dresselaers T; Himmelreich U; Lammertyn J; Lagae L
    ACS Nano; 2014 Mar; 8(3):2269-78. PubMed ID: 24483137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro T2 relaxivities of the Gd-based contrast agents (GBCAs) in human blood at 1.5 and 3 T.
    Shen Y; Goerner FL; Heverhagen JT; Snyder C; Hu D; Li X; Runge VM
    Acta Radiol; 2019 Jun; 60(6):694-701. PubMed ID: 30205704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scaling Laws at the Nano Size: The Effect of Particle Size and Shape on the Magnetism and Relaxivity of Iron Oxide Nanoparticle Contrast Agents.
    Smolensky ED; Park HY; Zhou Y; Rolla GA; Marjańska M; Botta M; Pierre VC
    J Mater Chem B; 2013 Jun; 1(22):2818-2828. PubMed ID: 23819021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.