These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 26286279)

  • 1. Single Airborne Dust Particles using Plasmonic Metal Films with Hole Arrays.
    Malone MA; McCormack M; Coe JV
    J Phys Chem Lett; 2012 Mar; 3(6):720-4. PubMed ID: 26286279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared spectral model for subwavelength particles of mixed composition based on the spectra of individual particles with calibration data for airborne dust.
    Lioi DB; Cilwa KE; McCormack M; Malone MA; Coe JV
    J Phys Chem A; 2013 Nov; 117(44):11297-307. PubMed ID: 24102475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dust Library of Plasmonically Enhanced Infrared Spectra of Individual Respirable Particles.
    Luthra A; Ravi A; Li S; Nystrom SV; Thompson Z; Coe JV
    Appl Spectrosc; 2016 Sep; 70(9):1546-54. PubMed ID: 27440136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modifying infrared scattering effects of single yeast cells with plasmonic metal mesh.
    Malone MA; Prakash S; Heer JM; Corwin LD; Cilwa KE; Coe JV
    J Chem Phys; 2010 Nov; 133(18):185101. PubMed ID: 21073230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing Plasmonics Under the Infrared Microscope: From Ni Nanoparticle Arrays to Infrared Micromesh.
    Malone MA; Luthra A; Lioi D; Coe JV
    J Phys Chem Lett; 2012 Jul; 3(13):1774-82. PubMed ID: 26291858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trapped electromagnetic modes and scaling in the transmittance of perforated metal films.
    Selcuk S; Woo K; Tanner DB; Hebard AF; Borisov AG; Shabanov SV
    Phys Rev Lett; 2006 Aug; 97(6):067403. PubMed ID: 17026204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of the polarization dependence of the optical transmission in subwavelength metal hole arrays.
    Zhao Q; Li C; Zhou YS; Wang HY
    J Phys Condens Matter; 2011 Jan; 23(1):015005. PubMed ID: 21406820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagation lengths of surface plasmon polaritons on metal films with arrays of subwavelength holes by infrared imaging spectroscopy.
    Cilwa KE; Rodriguez KR; Heer JM; Malone MA; Corwin LD; Coe JV
    J Chem Phys; 2009 Aug; 131(6):061101. PubMed ID: 19691370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Airborne dust particles in indoor environment and allergy].
    Ormstad H
    Tidsskr Nor Laegeforen; 2001 Apr; 121(11):1344-50. PubMed ID: 11419103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mid-infrared plasmonic multispectral filters.
    Wang A; Dan Y
    Sci Rep; 2018 Jul; 8(1):11257. PubMed ID: 30050145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films.
    Chen Q; Cumming DR
    Opt Express; 2010 Jun; 18(13):14056-62. PubMed ID: 20588537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of enhancement in absorbance of vibrational bands of adsorbates at a metal mesh with subwavelength hole arrays.
    Etou J; Ino D; Furukawa D; Watanabe K; Nakai IF; Matsumoto Y
    Phys Chem Chem Phys; 2011 Apr; 13(13):5817-23. PubMed ID: 21327205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral challenges of individual wavelength-scale particles: strong phonons and their distorted lineshapes.
    Ravi A; Malone MA; Luthra A; Lioi D; Coe JV
    Phys Chem Chem Phys; 2013 Jul; 15(25):10307-15. PubMed ID: 23703537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interferometric Plasmonic Lensing with Nanohole Arrays.
    Gong Y; Joly AG; El-Khoury PZ; Hess WP
    J Phys Chem Lett; 2014 Dec; 5(24):4243-8. PubMed ID: 26273969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subwavelength polarization rotators via double-layer metal hole arrays.
    Xiao X; Li Y; Hou B; Zhou B; Wen W
    Opt Lett; 2012 Sep; 37(17):3594-6. PubMed ID: 22940960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraordinary transmission of metal films with arrays of subwavelength holes.
    Coe JV; Heer JM; Teeters-Kennedy S; Tian H; Rodriguez KR
    Annu Rev Phys Chem; 2008; 59():179-202. PubMed ID: 17988200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks.
    Li WD; Hu J; Chou SY
    Opt Express; 2011 Oct; 19(21):21098-108. PubMed ID: 21997118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the Christiansen effect in the mid-infrared region for airborne particles.
    Pollard MJ; Griffiths PR; Nishikida K
    Appl Spectrosc; 2007 Aug; 61(8):860-6. PubMed ID: 17716405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon standing waves in large-area subwavelength hole arrays.
    Kwak ES; Henzie J; Chang SH; Gray SK; Schatz GC; Odom TW
    Nano Lett; 2005 Oct; 5(10):1963-7. PubMed ID: 16218718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.