BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26286316)

  • 1. Effect of Hypoxia on DDR1 Expression in Pituitary Adenomas.
    Li S; Zhang Z; Xue J; Guo X; Liang S; Liu A
    Med Sci Monit; 2015 Aug; 21():2433-8. PubMed ID: 26286316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of pituitary adenoma cell invasion and adhesion is mediated by discoidin domain receptor-1.
    Yoshida D; Teramoto A
    J Neurooncol; 2007 Mar; 82(1):29-40. PubMed ID: 17001518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulating effect of MMP-9 and TIMP-1 in pituitary adenoma invasion.
    Mao JH; Guo H; Si N; Qiu L; Guo LF; Sun ZS; Xiang Y; Yang XH; Zhao WG; Zhang WC
    Genet Mol Res; 2015 Dec; 14(4):17091-8. PubMed ID: 26681056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matrix metalloproteinase 2 and 9 expression correlated with cavernous sinus invasion of pituitary adenomas.
    Liu W; Matsumoto Y; Okada M; Miyake K; Kunishio K; Kawai N; Tamiya T; Nagao S
    J Med Invest; 2005 Aug; 52(3-4):151-8. PubMed ID: 16167532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated cell invasion is induced by hypoxia in a human pituitary adenoma cell line.
    Yoshida D; Teramoto A
    Cell Adh Migr; 2007; 1(1):43-51. PubMed ID: 19262092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matrix metalloproteinase-9, a potential biological marker in invasive pituitary adenomas.
    Gong J; Zhao Y; Abdel-Fattah R; Amos S; Xiao A; Lopes MB; Hussaini IM; Laws ER
    Pituitary; 2008; 11(1):37-48. PubMed ID: 17768685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metalloproteinases ADAM12 and MMP-14 are associated with cavernous sinus invasion in pituitary adenomas.
    Wang J; Voellger B; Benzel J; Schlomann U; Nimsky C; Bartsch JW; Carl B
    Int J Cancer; 2016 Sep; 139(6):1327-39. PubMed ID: 27144841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discoidin domain receptor 1 regulates bronchial epithelial repair and matrix metalloproteinase production.
    Roberts ME; Magowan L; Hall IP; Johnson SR
    Eur Respir J; 2011 Jun; 37(6):1482-93. PubMed ID: 20884741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of DDR1 in the gelatinases secretion induced by native type IV collagen in MDA-MB-231 breast cancer cells.
    Castro-Sanchez L; Soto-Guzman A; Guaderrama-Diaz M; Cortes-Reynosa P; Salazar EP
    Clin Exp Metastasis; 2011 Jun; 28(5):463-77. PubMed ID: 21461859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of miR-106b on Invasiveness of Pituitary Adenoma via PTEN-PI3K/AKT.
    Zheng Z; Zhang Y; Zhang Z; Yang Y; Song T
    Med Sci Monit; 2017 Mar; 23():1277-1285. PubMed ID: 28288092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of cold-inducible RNA-binding protein (CIRP) in pituitary adenoma and its relationships with tumor recurrence.
    Wang M; Zhang H; Heng X; Pang Q; Sun A
    Med Sci Monit; 2015 May; 21():1256-60. PubMed ID: 25934796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Role of matrix metalloproteinases-9, 2 and their inhibitor-TIMP-1, 2 in invasive pituitary adenomas biological behavior].
    He DS; Chen MZ; Wang HJ; Ke CL; Yan C; Zheng H; Hong YS
    Ai Zheng; 2002 Oct; 21(10):1124-8. PubMed ID: 12508658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CXCR4 antagonist AMD3100 suppresses hypoxia-mediated growth hormone production in GH3 rat pituitary adenoma cells.
    Yoshida D; Koketshu K; Nomura R; Teramoto A
    J Neurooncol; 2010 Oct; 100(1):51-64. PubMed ID: 20309720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matrix metalloproteinase-2 expression correlates with cavernous sinus invasion in pituitary adenomas.
    Liu W; Kunishio K; Matsumoto Y; Okada M; Nagao S
    J Clin Neurosci; 2005 Sep; 12(7):791-4. PubMed ID: 16198918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevation of growth hormone-releasing hormone receptor messenger ribonucleic acid expression in growth hormone-secreting pituitary adenoma with Gsalpha protein mutation.
    Sakai N; Kim K; Sanno N; Yoshida D; Teramoto A; Shibasaki T
    Neurol Med Chir (Tokyo); 2008; 48(11):481-7; discussion 487-8. PubMed ID: 19029774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Relationship Between Phospho-p38, Matrix Metalloproteinase 9, and Major Histocompatibility Complex Class I Chain-Related Molecule A Expression in Pituitary Adenomas Demonstrates a New Mechanism of Pituitary Adenoma Immune Escape.
    Han X; Geng X; Li Z; Chen Z; Liu Y; Liu P; Wang Q; Li C; Ai D; Li Z
    World Neurosurg; 2019 Mar; 123():e116-e124. PubMed ID: 30458325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between RSUME and HIF-1α/VEGF-A with invasion of pituitary adenoma.
    He W; Huang L; Shen X; Yang Y; Wang D; Yang Y; Zhu X
    Gene; 2017 Mar; 603():54-60. PubMed ID: 27989771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Expression of MMPPs and TIMP and invasiveness in pituitary adenomas].
    Wang J; Liu YS
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2004 Dec; 29(6):647-50. PubMed ID: 16114548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of discoidin domain receptor 1 increases the migration and invasion of hepatocellular carcinoma cells in association with matrix metalloproteinase.
    Park HS; Kim KR; Lee HJ; Choi HN; Kim DK; Kim BT; Moon WS
    Oncol Rep; 2007 Dec; 18(6):1435-41. PubMed ID: 17982627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demethylation of TIMP2 and TIMP3 Inhibits Cell Proliferation, Migration, and Invasion in Pituitary Adenomas.
    Yang Y; Huang F; Wu X; Huang C; Li Y
    Discov Med; 2024 May; 36(184):971-980. PubMed ID: 38798256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.