These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 26286318)

  • 1. A nanofibrous polypyrrole/silicon composite derived from cellulose substance as the anode material for lithium-ion batteries.
    Li J; Huang J
    Chem Commun (Camb); 2015 Oct; 51(78):14590-3. PubMed ID: 26286318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-Inspired Hierarchical Nanofibrous Fe3O4-TiO2-Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries.
    Li S; Wang M; Luo Y; Huang J
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17343-51. PubMed ID: 27328774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical SnO2 /Carbon Nanofibrous Composite Derived from Cellulose Substance as Anode Material for Lithium-Ion Batteries.
    Wang M; Li S; Zhang Y; Huang J
    Chemistry; 2015 Nov; 21(45):16195-202. PubMed ID: 26397841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired Hierarchical Nanofibrous Silver-Nanoparticle/Anatase-Rutile-Titania Composite as an Anode Material for Lithium-Ion Batteries.
    Luo Y; Li J; Huang J
    Langmuir; 2016 Nov; 32(47):12338-12343. PubMed ID: 27299674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tin/polypyrrole composite anode using sodium carboxymethyl cellulose binder for lithium-ion batteries.
    Chou SL; Gao XW; Wang JZ; Wexler D; Wang ZX; Chen LQ; Liu HK
    Dalton Trans; 2011 Dec; 40(48):12801-7. PubMed ID: 21637877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications.
    Rong J; Masarapu C; Ni J; Zhang Z; Wei B
    ACS Nano; 2010 Aug; 4(8):4683-90. PubMed ID: 20731447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries.
    Jia H; Stock C; Kloepsch R; He X; Badillo JP; Fromm O; Vortmann B; Winter M; Placke T
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1508-15. PubMed ID: 25574763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nitrogen-containing carbon film derived from vapor phase polymerized polypyrrole as a fast charging/discharging capability anode for lithium-ion batteries.
    Yuan T; He YS; Zhang W; Ma ZF
    Chem Commun (Camb); 2016 Jan; 52(1):112-5. PubMed ID: 26496974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superior cycling performance of a novel NKVO@polypyrrole composite anode for aqueous rechargeable lithium-ion batteries.
    Lashari NUR; Zhao M; Zheng Q; Duan W; Song X
    Dalton Trans; 2019 Sep; 48(33):12591-12597. PubMed ID: 31369011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries.
    He M; Yuan L; Hu X; Zhang W; Shu J; Huang Y
    Nanoscale; 2013 Apr; 5(8):3298-305. PubMed ID: 23483088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous α-MoO3/MWCNT nanocomposite synthesized via a surfactant-assisted solvothermal route as a lithium-ion-battery high-capacity anode material with excellent rate capability and cyclability.
    Ma F; Yuan A; Xu J; Hu P
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15531-41. PubMed ID: 26132052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries.
    Wu F; Chen J; Li L; Zhao T; Liu Z; Chen R
    ChemSusChem; 2013 Aug; 6(8):1438-44. PubMed ID: 23788469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review of porous silicon preparation and its application for lithium-ion battery anodes.
    Ge M; Fang X; Rong J; Zhou C
    Nanotechnology; 2013 Oct; 24(42):422001. PubMed ID: 24067244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical ZnO-Ag-C composite porous microspheres with superior electrochemical properties as anode materials for lithium ion batteries.
    Xie Q; Ma Y; Zeng D; Zhang X; Wang L; Yue G; Peng DL
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19895-904. PubMed ID: 25350718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bio-Inspired Nanotubular Na
    Yu B; Lin Z; Huang J
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33450914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries.
    Shen X; Mu D; Chen S; Wu B; Wu F
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3118-25. PubMed ID: 23532681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Si/Ag composite with bimodal micro-nano porous structure as a high-performance anode for Li-ion batteries.
    Hao Q; Zhao D; Duan H; Zhou Q; Xu C
    Nanoscale; 2015 Mar; 7(12):5320-7. PubMed ID: 25721441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries.
    Huang G; Zhang F; Du X; Qin Y; Yin D; Wang L
    ACS Nano; 2015 Feb; 9(2):1592-9. PubMed ID: 25629650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticulate Mn3O4/VGCF composite conversion-anode material with extraordinarily high capacity and excellent rate capability for lithium ion batteries.
    Ma F; Yuan A; Xu J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18129-38. PubMed ID: 25247688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conducting additive-free amorphous GeO2/C composite as a high capacity and long-term stability anode for lithium ion batteries.
    Ngo DT; Kalubarme RS; Le HT; Park CN; Park CJ
    Nanoscale; 2015 Feb; 7(6):2552-60. PubMed ID: 25579776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.