These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26286569)

  • 1. Unravelling the Role of the Compressed Gas on Melting Point of Liquid Confined in Nanospace.
    Chen S; Liu Y; Fu H; He Y; Li C; Huang W; Jiang Z; Wu G
    J Phys Chem Lett; 2012 Apr; 3(8):1052-5. PubMed ID: 26286569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of silica nanoparticles on ionic liquid behavior: a clear difference between adsorption and confinement.
    Wang Y; Li C; Guo X; Wu G
    Int J Mol Sci; 2013 Oct; 14(10):21045-52. PubMed ID: 24145752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of melting point depression for rare gas solids confined in carbon pores.
    Morishige K; Kataoka T
    J Chem Phys; 2015 Jul; 143(3):034707. PubMed ID: 26203042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silica-gel-confined ionic liquids: a new attempt for the development of supported nanoliquid catalysis.
    Shi F; Zhang Q; Li D; Deng Y
    Chemistry; 2005 Sep; 11(18):5279-88. PubMed ID: 15997434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. (2)H and (19)F solid-state NMR studies of the ionic liquid [C(2)Py][BTA]-d(10) confined in mesoporous silica materials.
    Waechtler M; Sellin M; Stark A; Akcakayiran D; Findenegg G; Gruenberg A; Breitzke H; Buntkowsky G
    Phys Chem Chem Phys; 2010 Oct; 12(37):11371-9. PubMed ID: 20714473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melting point depression of ionic liquids confined in nanospaces.
    Kanakubo M; Hiejima Y; Minami K; Aizawa T; Nanjo H
    Chem Commun (Camb); 2006 May; (17):1828-30. PubMed ID: 16622497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic liquid stationary phases for gas chromatography.
    Poole CF; Poole SK
    J Sep Sci; 2011 Apr; 34(8):888-900. PubMed ID: 21290604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology and melting behavior of ionic liquids inside single-walled carbon nanotubes.
    Chen S; Kobayashi K; Miyata Y; Imazu N; Saito T; Kitaura R; Shinohara H
    J Am Chem Soc; 2009 Oct; 131(41):14850-6. PubMed ID: 19780537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectric constant of liquids confined in the extended nanospace measured by a streaming potential method.
    Morikawa K; Kazoe Y; Mawatari K; Tsukahara T; Kitamori T
    Anal Chem; 2015 Feb; 87(3):1475-9. PubMed ID: 25569302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticles in ionic liquids: interactions and organization.
    He Z; Alexandridis P
    Phys Chem Chem Phys; 2015 Jul; 17(28):18238-61. PubMed ID: 26120610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of thermodynamics, and structural, dynamical, and electrical properties of polyoxometalate ionic liquid confined into carbon nanotubes during the melting process using molecular dynamics simulation.
    Khalilzadeh Z; Abbaspour M; Zonoz FM
    RSC Adv; 2022 Dec; 13(1):624-631. PubMed ID: 36605668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surprisingly high, bulk liquid-like mobility of silica-confined ionic liquids.
    Göbel R; Hesemann P; Weber J; Möller E; Friedrich A; Beuermann S; Taubert A
    Phys Chem Chem Phys; 2009 May; 11(19):3653-62. PubMed ID: 19421476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accounting for the unique, doubly dual nature of ionic liquids from a molecular thermodynamic and modeling standpoint.
    Rebelo LP; Lopes JN; Esperança JM; Guedes HJ; Łachwa J; Najdanovic-Visak V; Visak ZP
    Acc Chem Res; 2007 Nov; 40(11):1114-21. PubMed ID: 17622178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of C2 substitution on melting point and liquid phase dynamics of imidazolium based-ionic liquids: insights from molecular dynamics simulations.
    Zhang Y; Maginn EJ
    Phys Chem Chem Phys; 2012 Sep; 14(35):12157-64. PubMed ID: 22868451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of ionic liquids as stationary phases in hyphenated gas chromatography techniques.
    Ragonese C; Sciarrone D; Tranchida PQ; Dugo P; Mondello L
    J Chromatogr A; 2012 Sep; 1255():130-44. PubMed ID: 22621883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilized ionic liquids as high-selectivity/high-temperature/high-stability gas chromatography stationary phases.
    Anderson JL; Armstrong DW
    Anal Chem; 2005 Oct; 77(19):6453-62. PubMed ID: 16194112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ crystallization of low-melting ionic liquid [BMIM][PF6] under high pressure up to 2 GPa.
    Su L; Li M; Zhu X; Wang Z; Chen Z; Li F; Zhou Q; Hong S
    J Phys Chem B; 2010 Apr; 114(15):5061-5. PubMed ID: 20353249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormal FT-IR and FTRaman spectra of ionic liquids confined in nano-porous silica gel.
    Shi F; Deng Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Nov; 62(1-3):239-44. PubMed ID: 16257720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media.
    Huber P
    J Phys Condens Matter; 2015 Mar; 27(10):103102. PubMed ID: 25679044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraction of organic compounds with room temperature ionic liquids.
    Poole CF; Poole SK
    J Chromatogr A; 2010 Apr; 1217(16):2268-86. PubMed ID: 19766228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.