These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 26286763)

  • 1. Realization of Associative Memory in an Enzymatic Process: Toward Biomolecular Networks with Learning and Unlearning Functionalities.
    Bocharova V; MacVittie K; Chinnapareddy S; Halámek J; Privman V; Katz E
    J Phys Chem Lett; 2012 May; 3(10):1234-7. PubMed ID: 26286763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Networked enzymatic logic gates with filtering: new theoretical modeling expressions and their experimental application.
    Privman V; Zavalov O; Halámková L; Moseley F; Halámek J; Katz E
    J Phys Chem B; 2013 Dec; 117(48):14928-39. PubMed ID: 24205870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A bioinspired associative memory system based on enzymatic cascades.
    MacVittie K; Halámek J; Privman V; Katz E
    Chem Commun (Camb); 2013 Aug; 49(62):6962-4. PubMed ID: 23807454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model system for targeted drug release triggered by biomolecular signals logically processed through enzyme logic networks.
    Mailloux S; Halámek J; Katz E
    Analyst; 2014 Mar; 139(5):982-6. PubMed ID: 24404562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Majority and minority gates realized in enzyme-biocatalyzed systems integrated with logic networks and interfaced with bioelectronic systems.
    Mailloux S; Guz N; Zakharchenko A; Minko S; Katz E
    J Phys Chem B; 2014 Jun; 118(24):6775-84. PubMed ID: 24873717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofuel cell controlled by enzyme logic network--approaching physiologically regulated devices.
    Tam TK; Pita M; Ornatska M; Katz E
    Bioelectrochemistry; 2009 Sep; 76(1-2):4-9. PubMed ID: 19351582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network capacity analysis for latent attractor computation.
    Doboli S; Minai AA
    Network; 2003 May; 14(2):273-302. PubMed ID: 12790185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modularity of biochemical filtering for inducing sigmoid response in both inputs in an enzymatic AND gate.
    Bakshi S; Zavalov O; Halámek J; Privman V; Katz E
    J Phys Chem B; 2013 Aug; 117(34):9857-65. PubMed ID: 23906353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 'Synaptic tagging' and 'cross-tagging' and related associative reinforcement processes of functional plasticity as the cellular basis for memory formation.
    Frey S; Frey JU
    Prog Brain Res; 2008; 169():117-43. PubMed ID: 18394471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An associative capacitive network based on nanoscale complementary resistive switches for memory-intensive computing.
    Kavehei O; Linn E; Nielen L; Tappertzhofen S; Skafidas E; Valov I; Waser R
    Nanoscale; 2013 Jun; 5(11):5119-28. PubMed ID: 23644652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switchable electrode controlled by enzyme logic network system: approaching physiologically regulated bioelectronics.
    Privman M; Tam TK; Pita M; Katz E
    J Am Chem Soc; 2009 Jan; 131(3):1314-21. PubMed ID: 19113843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data.
    Kasabov NK
    Neural Netw; 2014 Apr; 52():62-76. PubMed ID: 24508754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global adaptation in networks of selfish components: emergent associative memory at the system scale.
    Watson RA; Mills R; Buckley CL
    Artif Life; 2011; 17(3):147-66. PubMed ID: 21554114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Organization and Information Processing: From Basic Enzymatic Activities to Complex Adaptive Cellular Behavior.
    De la Fuente IM; Martínez L; Carrasco-Pujante J; Fedetz M; López JI; Malaina I
    Front Genet; 2021; 12():644615. PubMed ID: 34093645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information.
    Vinogradova OS
    Hippocampus; 2001; 11(5):578-98. PubMed ID: 11732710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complementary molecular models of learning and memory.
    Conrad M
    Biosystems; 1976 Dec; 8(3):119-38. PubMed ID: 1016695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Set-reset flip-flop memory based on enzyme reactions: toward memory systems controlled by biochemical pathways.
    Pita M; Strack G; MacVittie K; Zhou J; Katz E
    J Phys Chem B; 2009 Dec; 113(49):16071-6. PubMed ID: 19904997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multianalyte digital enzyme biosensors with built-in Boolean logic.
    Katz E; Wang J; Privman M; Halámek J
    Anal Chem; 2012 Jul; 84(13):5463-9. PubMed ID: 22656194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast Yet Effective Machine Unlearning.
    Tarun AK; Chundawat VS; Mandal M; Kankanhalli M
    IEEE Trans Neural Netw Learn Syst; 2023 May; PP():. PubMed ID: 37126635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-associative neural networks and their applications to learning and retrieving complex spatio-temporal sequences.
    Wang L
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(1):73-82. PubMed ID: 18252281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.