These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 26286772)

  • 1. Shedding Light on Surface-Enhanced Raman Scattering Hot Spots through Single-Molecule Super-Resolution Imaging.
    Willets KA; Stranahan SM; Weber ML
    J Phys Chem Lett; 2012 May; 3(10):1286-94. PubMed ID: 26286772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super-resolution imaging of SERS hot spots.
    Willets KA
    Chem Soc Rev; 2014 Jun; 43(11):3854-64. PubMed ID: 24309836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-resolution optical imaging of single-molecule SERS hot spots.
    Stranahan SM; Willets KA
    Nano Lett; 2010 Sep; 10(9):3777-84. PubMed ID: 20718441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-resolution imaging reveals a difference between SERS and luminescence centroids.
    Weber ML; Litz JP; Masiello DJ; Willets KA
    ACS Nano; 2012 Feb; 6(2):1839-48. PubMed ID: 22248484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Super-Resolution Surface-Enhanced Raman Scattering: Perspectives on the Past, Present, and Future.
    Willets KA
    ACS Nano; 2024 Oct; 18(41):27824-27832. PubMed ID: 39353138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New tools for investigating electromagnetic hot spots in single-molecule surface-enhanced Raman scattering.
    Willets KA
    Chemphyschem; 2013 Oct; 14(14):3186-95. PubMed ID: 23780669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells.
    Radziuk D; Moehwald H
    Phys Chem Chem Phys; 2015 Sep; 17(33):21072-93. PubMed ID: 25619814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays.
    Li K; Clime L; Cui B; Veres T
    Nanotechnology; 2008 Apr; 19(14):145305. PubMed ID: 21817759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marangoni Convection Assisted Single Molecule Detection with Nanojet Surface Enhanced Raman Spectroscopy.
    Chang TW; Wang X; Mahigir A; Veronis G; Liu GL; Gartia MR
    ACS Sens; 2017 Aug; 2(8):1133-1138. PubMed ID: 28726383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman spectroelectrochemistry of molecules within individual electromagnetic hot spots.
    Shegai T; Vaskevich A; Rubinstein I; Haran G
    J Am Chem Soc; 2009 Oct; 131(40):14390-8. PubMed ID: 19807184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering.
    Chen M; Phang IY; Lee MR; Yang JK; Ling XY
    Langmuir; 2013 Jun; 29(23):7061-9. PubMed ID: 23706081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient surface enhanced Raman scattering on confeito-like gold nanoparticle-adsorbed self-assembled monolayers.
    Chang CC; Imae T; Chen LY; Ujihara M
    Phys Chem Chem Phys; 2015 Dec; 17(48):32328-34. PubMed ID: 26584337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal.
    Saha A; Palmal S; Jana NR
    Nanoscale; 2012 Oct; 4(20):6649-57. PubMed ID: 22992658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct imaging of surface-enhanced Raman scattering in the near field.
    Zhang P; Smith S; Rumbles G; Himmel ME
    Langmuir; 2005 Jan; 21(2):520-3. PubMed ID: 15641817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of long silver nanowires into highly aligned structure to achieve uniform "Hot Spots" for Surface-enhanced Raman scattering detection.
    Chen S; Li Q; Tian D; Ke P; Yang X; Wu Q; Chen J; Hu C; Ji H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 273():121030. PubMed ID: 35189488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.
    Ertsgaard CT; McKoskey RM; Rich IS; Lindquist NC
    ACS Nano; 2014 Oct; 8(10):10941-6. PubMed ID: 25268457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cantilever tip near-field surface-enhanced Raman imaging of tris(bipyridine)ruthenium(II) on silver nanoparticles-coated substrates.
    Jiang Y; Wang A; Ren B; Tian ZQ
    Langmuir; 2008 Oct; 24(20):12054-61. PubMed ID: 18774828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clusters-based silver nanorings: An active substrate for surface-enhanced Raman scattering.
    Hossain MK; Drmosh QA
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 263():120141. PubMed ID: 34280795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization-based super-resolution imaging of surface-enhanced Raman scattering nanoparticles with orientational information.
    Wang M; Chen M; Zhanghao K; Zhang X; Jing Z; Gao J; Zhang MQ; Jin D; Dai Z; Xi P; Dai Q
    Nanoscale; 2018 Nov; 10(42):19757-19765. PubMed ID: 30211422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulating "Hot Spots" from Nanometer to Angstrom: Toward Understanding Integrated Contributions of Molecule Number and Gap Size for Ultrasensitive Surface-Enhanced Raman Scattering Detection.
    Lu H; Zhu L; Lu Y; Su J; Zhang R; Cui Y
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39359-39368. PubMed ID: 31565918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.