These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26286788)

  • 21. Photothermal lens detection of gold nanoparticles: theory and experiments.
    Brusnichkin AV; Nedosekin DA; Proskurnin MA; Zharov VP
    Appl Spectrosc; 2007 Nov; 61(11):1191-201. PubMed ID: 18028698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoparticle doping in nematic liquid crystals: distinction between surface and bulk effects by numerical simulations.
    Urbanski M; Mirzaei J; Hegmann T; Kitzerow HS
    Chemphyschem; 2014 May; 15(7):1395-404. PubMed ID: 24482304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of a dispersion of magnetic and nonmagnetic nanoparticles on the magnetic Fredericksz transition of the liquid crystal 5CB.
    Mouhli A; Ayeb H; Othman T; Fresnais J; Dupuis V; Nemitz IR; Pendery JS; Rosenblatt C; Sandre O; Lacaze E
    Phys Rev E; 2017 Jul; 96(1-1):012706. PubMed ID: 29347110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Super-resolution nonlinear photothermal microscopy.
    Nedosekin DA; Galanzha EI; Dervishi E; Biris AS; Zharov VP
    Small; 2014 Jan; 10(1):135-42. PubMed ID: 23864531
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors.
    Mahmoud MA; El-Sayed MA
    J Am Chem Soc; 2010 Sep; 132(36):12704-10. PubMed ID: 20722373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.
    Miller MM; Lazarides AA
    J Phys Chem B; 2005 Nov; 109(46):21556-65. PubMed ID: 16853799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment.
    Pustovalov V; Astafyeva L; Jean B
    Nanotechnology; 2009 Jun; 20(22):225105. PubMed ID: 19433875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy.
    Pache C; Bocchio NL; Bouwens A; Villiger M; Berclaz C; Goulley J; Gibson MI; Santschi C; Lasser T
    Opt Express; 2012 Sep; 20(19):21385-99. PubMed ID: 23037262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resonant scattering-enhanced photothermal microscopy.
    Li Q; Shi Z; Wu L; Wei H
    Nanoscale; 2020 Apr; 12(15):8397-8403. PubMed ID: 32239001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoparticle induced director distortion and disorder in liquid crystal-nanoparticle dispersions.
    Gupta M; Satpathy I; Roy A; Pratibha R
    J Colloid Interface Sci; 2010 Dec; 352(2):292-8. PubMed ID: 20869064
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Terahertz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB.
    Tsai TR; Chen CY; Pan CL; Pan RP; Zhang XC
    Appl Opt; 2003 May; 42(13):2372-6. PubMed ID: 12737471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-molecule imaging in live cell using gold nanoparticles.
    Leduc C; Si S; Gautier JJ; Gao Z; Shibu ES; Gautreau A; Giannone G; Cognet L; Lounis B
    Methods Cell Biol; 2015; 125():13-27. PubMed ID: 25640421
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Agglomeration structure of superparamagnetic nanoparticles in a nematic liquid crystal medium: Image analysis datasets based on cryo-electron microscopy and polarised optical microscopy techniques.
    Sung B; Abelmann L
    Data Brief; 2021 Feb; 34():106716. PubMed ID: 33490334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calculation of the birefringences of nematic liquid crystals at optical and infrared wavelengths.
    Simpson SH; Richardson RM; Hanna S
    J Chem Phys; 2005 Oct; 123(13):134904. PubMed ID: 16223328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light-induced changes of the refractive indices in a colloid of gold nanoparticles in a nematic liquid crystal.
    Lysenko D; Ouskova E; Ksondzyk S; Reshetnyak V; Cseh L; Mehl GH; Reznikov Y
    Eur Phys J E Soft Matter; 2012 May; 35(5):33. PubMed ID: 22592815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts.
    Qi H; Kinkead B; Marx VM; Zhang HR; Hegmann T
    Chemphyschem; 2009 Jun; 10(8):1211-8. PubMed ID: 19334026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Liquid phase IR detector based on the photothermal effect of reduced graphene oxide-doped liquid crystals.
    Adeshina MA; Lee H; Mareddi B; Kang D; Ogunleye AM; Kim H; Kim T; Choi M; Park H; Park J
    Nanoscale; 2023 Feb; 15(5):2061-2066. PubMed ID: 36651184
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Slow single-molecule diffusion in liquid crystals.
    Pumpa M; Cichos F
    J Phys Chem B; 2012 Dec; 116(49):14487-93. PubMed ID: 23083329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glassiness of thermotropic liquid crystals across the isotropic-nematic transition.
    Chakrabarti D; Bagchi B
    J Phys Chem B; 2007 Oct; 111(40):11646-57. PubMed ID: 17880203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.