These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2628688)

  • 1. 13C spectroscopic imaging. A simple approach to in vivo 13C investigations.
    Müller S; Beckmann N
    Magn Reson Med; 1989 Dec; 12(3):400-6. PubMed ID: 2628688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopy and imaging with a 4 tesla whole-body MR system.
    Bomsdorf H; Helzel T; Kunz D; Röschmann P; Tschendel O; Wieland J
    NMR Biomed; 1988 Jun; 1(3):151-8. PubMed ID: 3275125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of three-dimensional wavelet encoding spectroscopic imaging: in vivo application and method comparison.
    Young R; Serrai H
    Magn Reson Med; 2009 Jan; 61(1):6-15. PubMed ID: 19097215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor imaging using hyperpolarized 13C magnetic resonance spectroscopy.
    Brindle KM; Bohndiek SE; Gallagher FA; Kettunen MI
    Magn Reson Med; 2011 Aug; 66(2):505-19. PubMed ID: 21661043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bloch-Siegert shift compensated and cyclic irradiation sidebands eliminated, double-adiabatic homonuclear decoupling for 13C- and 15N-double-labeled proteins.
    Zhang S; Gorenstein DG
    J Magn Reson; 1998 May; 132(1):81-7. PubMed ID: 9615413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homo-nuclear 13C J-decoupling in uniformly 13C-enriched solid proteins.
    Igumenova TI; McDermott AE
    J Magn Reson; 2005 Jul; 175(1):11-20. PubMed ID: 15949744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity enhancement in whole-body natural abundance 13C spectroscopy using 13C/1H double-resonance techniques at 4 tesla.
    Bomsdorf H; Röschmann P; Wieland J
    Magn Reson Med; 1991 Nov; 22(1):10-22. PubMed ID: 1798384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective resonance suppression 1H-[13C] NMR spectroscopy with asymmetric adiabatic RF pulses.
    Xin L; Frenkel H; Mlynárik V; Morgenthaler FD; Gruetter R
    Magn Reson Med; 2009 Feb; 61(2):260-6. PubMed ID: 19165882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton-enhanced 13C imaging/spectroscopy by polarization transfer.
    Swanson SD; Quint LE; Yeung HN
    Magn Reson Med; 1990 Jul; 15(1):102-11. PubMed ID: 2165207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-fast three dimensional imaging of hyperpolarized 13C in vivo.
    Bhattacharya P; Harris K; Lin AP; Mansson M; Norton VA; Perman WH; Weitekamp DP; Ross BD
    MAGMA; 2005 Nov; 18(5):245-56. PubMed ID: 16320090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS.
    Vinding MS; Laustsen C; Maximov II; Søgaard LV; Ardenkjaer-Larsen JH; Nielsen NC
    J Magn Reson; 2013 Feb; 227():57-61. PubMed ID: 23298857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of 13C-labeled metabolites in the in vivo canine heart by B1 insensitive heteronuclear coherent polarization transfer and comparison of signal enhancement with NOE.
    Wei H; Merkle H; Xu Y; Ellermann J; Sipprell K; Uğurbil K
    Magn Reson Med; 1997 Mar; 37(3):327-30. PubMed ID: 9055219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TEDOR with adiabatic inversion pulses: Resonance assignments of 13C/15N labelled RNAs.
    Riedel K; Leppert J; Ohlenschläger O; Görlach M; Ramachandran R
    J Biomol NMR; 2005 Jan; 31(1):49-57. PubMed ID: 15692738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heteronuclear cross polarization for enhanced sensitivity of in vivo 13C MR spectroscopy on a clinical 1.5 T MR system.
    van den Bergh AJ; van den Boogert HJ; Heerschap A
    J Magn Reson; 1998 Nov; 135(1):93-8. PubMed ID: 9799681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the utility of spectroscopic imaging as a tool for generating geometrically accurate MR images and parameter maps in the presence of field inhomogeneities and chemical shift effects.
    Bakker CJ; de Leeuw H; van de Maat GH; van Gorp JS; Bouwman JG; Seevinck PR
    Magn Reson Imaging; 2013 Jan; 31(1):86-95. PubMed ID: 22898694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating brain metabolism at high fields using localized 13C NMR spectroscopy without 1H decoupling.
    Deelchand DK; Uğurbil K; Henry PG
    Magn Reson Med; 2006 Feb; 55(2):279-86. PubMed ID: 16345037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Status and perspectives of molecular imaging with high-resolution nuclear magnetic resonance].
    Bachert P
    Z Med Phys; 2005; 15(3):163-8. PubMed ID: 16171037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the specific absorption rate and calibration of decoupling parameters for proton decoupled carbon-13 MR spectroscopy at 3.0 T.
    Saito M; Matsuda T; Tropp J; Inubushi T; Nakai T
    Eur J Radiol; 2005 Aug; 55(2):289-93. PubMed ID: 16036162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized sensitivity enhanced in vivo 13C MRS to detect glucose metabolism in the mouse brain.
    Nabuurs CI; Klomp DW; Veltien A; Kan HE; Heerschap A
    Magn Reson Med; 2008 Mar; 59(3):626-30. PubMed ID: 18224699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Which prior knowledge? Quantification of in vivo brain 13C MR spectra following 13C glucose infusion using AMARES.
    Lanz B; Duarte JM; Kunz N; Mlynárik V; Gruetter R; Cudalbu C
    Magn Reson Med; 2013 Jun; 69(6):1512-22. PubMed ID: 22886985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.