BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 26287222)

  • 1. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants.
    Tsydenova O; Batoev V; Batoeva A
    Int J Environ Res Public Health; 2015 Aug; 12(8):9542-61. PubMed ID: 26287222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive study on effects of water matrices on removal of pharmaceuticals by three different kinds of advanced oxidation processes.
    Tokumura M; Sugawara A; Raknuzzaman M; Habibullah-Al-Mamun M; Masunaga S
    Chemosphere; 2016 Sep; 159():317-325. PubMed ID: 27317938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced removal of dichloroacetonitrile from drinking water by the combination of solar-photocatalysis and ozonation.
    Shin D; Jang M; Cui M; Na S; Khim J
    Chemosphere; 2013 Nov; 93(11):2901-8. PubMed ID: 24125715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ozone-Based Advanced Oxidation Processes for Primidone Removal in Water using Simulated Solar Radiation and TiO
    Figueredo MA; Rodríguez EM; Checa M; Beltran FJ
    Molecules; 2019 May; 24(9):. PubMed ID: 31058864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solar photocatalytic disinfection of agricultural pathogenic fungi (Curvularia sp.) in real urban wastewater.
    Aguas Y; Hincapie M; Fernández-Ibáñez P; Polo-López MI
    Sci Total Environ; 2017 Dec; 607-608():1213-1224. PubMed ID: 28732400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle assessment of solar photo-Fenton and solar photoelectro-Fenton processes used for the degradation of aqueous α-methylphenylglycine.
    Serra A; Domènech X; Brillas E; Peral J
    J Environ Monit; 2011 Jan; 13(1):167-74. PubMed ID: 21079836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of clarithromycin and sulfamethoxazole-resistant Enterococcus by pilot-scale solar-driven Fenton oxidation.
    Karaolia P; Michael I; García-Fernández I; Agüera A; Malato S; Fernández-Ibáñez P; Fatta-Kassinos D
    Sci Total Environ; 2014 Jan; 468-469():19-27. PubMed ID: 24012892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of advanced oxidation processes and toxicity assessment of transformation products.
    Sharma A; Ahmad J; Flora SJS
    Environ Res; 2018 Nov; 167():223-233. PubMed ID: 30055452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The detrimental influence of bacteria (E. coli, Shigella and Salmonella) on the degradation of organic compounds (and vice versa) in TiO2 photocatalysis and near-neutral photo-Fenton processes under simulated solar light.
    Moncayo-Lasso A; Mora-Arismendi LE; Rengifo-Herrera JA; Sanabria J; Benítez N; Pulgarin C
    Photochem Photobiol Sci; 2012 May; 11(5):821-7. PubMed ID: 22370626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel combined solar pasteurizer/TiO
    Monteagudo JM; Durán A; Martín IS; Acevedo AM
    Chemosphere; 2017 Feb; 168():1447-1456. PubMed ID: 27923504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH.
    Miralles-Cuevas S; Oller I; Pérez JAS; Malato S
    Water Res; 2014 Nov; 64():23-31. PubMed ID: 25025178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TiO
    Laxma Reddy PV; Kavitha B; Kumar Reddy PA; Kim KH
    Environ Res; 2017 Apr; 154():296-303. PubMed ID: 28126690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review.
    Sillanpää M; Ncibi MC; Matilainen A
    J Environ Manage; 2018 Feb; 208():56-76. PubMed ID: 29248788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining micelle-clay sorption to solar photo-Fenton processes for domestic wastewater treatment.
    Brienza M; Nir S; Plantard G; Goetz V; Chiron S
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):18971-18978. PubMed ID: 29948669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life cycle assessment of a coupled solar photocatalytic-biological process for wastewater treatment.
    Muñoz I; Peral J; Ayllón JA; Malato S; Passarinho P; Domènech X
    Water Res; 2006 Nov; 40(19):3533-40. PubMed ID: 16989886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review.
    Kanakaraju D; Glass BD; Oelgemöller M
    J Environ Manage; 2018 Aug; 219():189-207. PubMed ID: 29747102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of carbamazepine, diclofenac and trimethoprim by solar driven advanced oxidation processes in a compound triangular collector based reactor: A comparison between homogeneous and heterogeneous processes.
    Kowalska K; Maniakova G; Carotenuto M; Sacco O; Vaiano V; Lofrano G; Rizzo L
    Chemosphere; 2020 Jan; 238():124665. PubMed ID: 31473529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review.
    Matafonova G; Batoev V
    Water Res; 2018 Apr; 132():177-189. PubMed ID: 29331640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of winery wastewater by sulphate radicals: catalytic and solar photocatalytic activations.
    Rodríguez-Chueca J; Amor C; Mota J; Lucas MS; Peres JA
    Environ Sci Pollut Res Int; 2017 Oct; 24(28):22414-22426. PubMed ID: 28803372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoelectrocatalytic degradation of carbamazepine using Ti/TiO2 nanostructured electrodes deposited by means of a pulsed laser deposition process.
    Daghrir R; Drogui P; Dimboukou-Mpira A; El Khakani MA
    Chemosphere; 2013 Nov; 93(11):2756-66. PubMed ID: 24144463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.