These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26287361)

  • 21. Effects of Solid Electrolyte Interphase Components on the Reduction of LiFSI over Lithium Metal.
    Kamphaus EP; Gomez SA; Qin X; Shao M; Balbuena PB
    Chemphyschem; 2020 Jun; 21(12):1310-1317. PubMed ID: 32364643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium.
    He M; Guo R; Hobold GM; Gao H; Gallant BM
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):73-79. PubMed ID: 31848237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoscale imaging of fundamental li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters.
    Sacci RL; Black JM; Balke N; Dudney NJ; More KL; Unocic RR
    Nano Lett; 2015 Mar; 15(3):2011-8. PubMed ID: 25706693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure formation and surface chemistry of ionic liquids on model electrode surfaces-Model studies for the electrode
    Buchner F; Uhl B; Forster-Tonigold K; Bansmann J; Groß A; Behm RJ
    J Chem Phys; 2018 May; 148(19):193821. PubMed ID: 30307189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries.
    Cao C; Shyam B; Wang J; Toney MF; Steinrück HG
    Acc Chem Res; 2019 Sep; 52(9):2673-2683. PubMed ID: 31479242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unraveling the Formation Mechanism of Solid-Liquid Electrolyte Interphases on LiPON Thin Films.
    Weiss M; Seidlhofer BK; Geiß M; Geis C; Busche MR; Becker M; Vargas-Barbosa NM; Silvi L; Zeier WG; Schröder D; Janek J
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9539-9547. PubMed ID: 30735347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ SEM observation of the Si negative electrode reaction in an ionic-liquid-based lithium-ion secondary battery.
    Tsuda T; Kanetsuku T; Sano T; Oshima Y; Ui K; Yamagata M; Ishikawa M; Kuwabata S
    Microscopy (Oxf); 2015 Jun; 64(3):159-68. PubMed ID: 25688094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Operando EQCM-D with Simultaneous in Situ EIS: New Insights into Interphase Formation in Li Ion Batteries.
    Kitz PG; Lacey MJ; Novák P; Berg EJ
    Anal Chem; 2019 Feb; 91(3):2296-2303. PubMed ID: 30569698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stable Cycling Lithium-Sulfur Solid Batteries with Enhanced Li/Li
    Umeshbabu E; Zheng B; Zhu J; Wang H; Li Y; Yang Y
    ACS Appl Mater Interfaces; 2019 May; 11(20):18436-18447. PubMed ID: 31033273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of the Dynamic Solid Electrolyte Interphase in Mg Electrolytes for Rechargeable Mg-Ion Batteries.
    Fan S; Cora S; Sa N
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46635-46645. PubMed ID: 36205546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase.
    Wan G; Guo F; Li H; Cao Y; Ai X; Qian J; Li Y; Yang H
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):593-601. PubMed ID: 29243904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts.
    Busche MR; Drossel T; Leichtweiss T; Weber DA; Falk M; Schneider M; Reich ML; Sommer H; Adelhelm P; Janek J
    Nat Chem; 2016 May; 8(5):426-34. PubMed ID: 27102676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct, operando observation of the bilayer solid electrolyte interphase structure: Electrolyte reduction on a non-intercalating electrode.
    Lee CH; Dura JA; LeBar A; DeCaluwe SC
    J Power Sources; 2019; 412():. PubMed ID: 32831460
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mirror-Like Electrodeposition of Lithium Metal under a Low-Resistance Artificial Solid Electrolyte Interphase Layer.
    Hu F; Li Z; Wang S; Tenhaeff WE
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39674-39684. PubMed ID: 32805885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stabilizing Li
    Zheng B; Zhu J; Wang H; Feng M; Umeshbabu E; Li Y; Wu QH; Yang Y
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25473-25482. PubMed ID: 29989392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Situ Studies of Solid Electrolyte Interphase (SEI) Formation on Crystalline Carbon Surfaces by Neutron Reflectometry and Atomic Force Microscopy.
    Steinhauer M; Stich M; Kurniawan M; Seidlhofer BK; Trapp M; Bund A; Wagner N; Friedrich KA
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35794-35801. PubMed ID: 28920669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and Li
    Boyer MJ; Vilčiauskas L; Hwang GS
    Phys Chem Chem Phys; 2016 Oct; 18(40):27868-27876. PubMed ID: 27711674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct
    Mozhzhukhina N; Flores E; Lundström R; Nyström V; Kitz PG; Edström K; Berg EJ
    J Phys Chem Lett; 2020 May; 11(10):4119-4123. PubMed ID: 32354215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ determination of the liquid/solid interface thickness and composition for the Li ion cathode LiMn(1.5)Ni(0.5)O4.
    Browning JF; Baggetto L; Jungjohann KL; Wang Y; Tenhaeff WE; Keum JK; Wood DL; Veith GM
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18569-76. PubMed ID: 25285852
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Efficacy and Polymeric Solid-Electrolyte Interphase for Closely Packed Li Electrodeposition.
    Li S; Liu Q; Zhang W; Fan L; Wang X; Wang X; Shen Z; Zang X; Zhao Y; Ma F; Lu Y
    Adv Sci (Weinh); 2021 Mar; 8(6):2003240. PubMed ID: 33747731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.