BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 26287375)

  • 1. Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes.
    Petters C; Thiel K; Dringen R
    Nanotoxicology; 2016; 10(3):332-42. PubMed ID: 26287375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferritin up-regulation and transient ROS production in cultured brain astrocytes after loading with iron oxide nanoparticles.
    Geppert M; Hohnholt MC; Nürnberger S; Dringen R
    Acta Biomater; 2012 Oct; 8(10):3832-9. PubMed ID: 22750736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells.
    Luther EM; Petters C; Bulcke F; Kaltz A; Thiel K; Bickmeyer U; Dringen R
    Acta Biomater; 2013 Sep; 9(9):8454-65. PubMed ID: 23727247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron oxide nanoparticles suppress the production of IL-1beta via the secretory lysosomal pathway in murine microglial cells.
    Wu HY; Chung MC; Wang CC; Huang CH; Liang HJ; Jan TR
    Part Fibre Toxicol; 2013 Sep; 10():46. PubMed ID: 24047432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses.
    Luo C; Li Y; Yang L; Wang X; Long J; Liu J
    Arch Toxicol; 2015 Mar; 89(3):357-69. PubMed ID: 24847785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of iron oxide nanoparticles by cultured primary neurons.
    Petters C; Dringen R
    Neurochem Int; 2015 Feb; 81():1-9. PubMed ID: 25510641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models.
    Sun Z; Yathindranath V; Worden M; Thliveris JA; Chu S; Parkinson FE; Hegmann T; Miller DW
    Int J Nanomedicine; 2013; 8():961-70. PubMed ID: 23494517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytotoxicity and proliferative capacity impairment induced on human brain cell cultures after short- and long-term exposure to magnetite nanoparticles.
    Coccini T; Caloni F; Ramírez Cando LJ; De Simone U
    J Appl Toxicol; 2017 Mar; 37(3):361-373. PubMed ID: 27480414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes.
    Geppert M; Hohnholt MC; Thiel K; Nürnberger S; Grunwald I; Rezwan K; Dringen R
    Nanotechnology; 2011 Apr; 22(14):145101. PubMed ID: 21346306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microglial cells in culture express a prominent glutathione system for the defense against reactive oxygen species.
    Hirrlinger J; Gutterer JM; Kussmaul L; Hamprecht B; Dringen R
    Dev Neurosci; 2000; 22(5-6):384-92. PubMed ID: 11111154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the toxic effects of iron oxide nanoparticles.
    Soenen SJ; De Cuyper M; De Smedt SC; Braeckmans K
    Methods Enzymol; 2012; 509():195-224. PubMed ID: 22568907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indirect effects of TiO2 nanoparticle on neuron-glial cell interactions.
    Hsiao IL; Chang CC; Wu CY; Hsieh YK; Chuang CY; Wang CF; Huang YJ
    Chem Biol Interact; 2016 Jul; 254():34-44. PubMed ID: 27216632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human brain derived cells respond in a type-specific manner after exposure to urban particulate matter (PM).
    Campbell A; Daher N; Solaimani P; Mendoza K; Sioutas C
    Toxicol In Vitro; 2014 Oct; 28(7):1290-5. PubMed ID: 24999231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment with iron oxide nanoparticles induces ferritin synthesis but not oxidative stress in oligodendroglial cells.
    Hohnholt MC; Geppert M; Dringen R
    Acta Biomater; 2011 Nov; 7(11):3946-54. PubMed ID: 21763792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and interfacing of biocompatible iron oxide nanoparticles through the ferroxidase activity of Helicobacter Pylori ferritin.
    Lee IL; Li PS; Yu WL; Shen HH
    Biofabrication; 2012 Dec; 4(4):045001. PubMed ID: 23013844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring of the Cytoskeleton-Dependent Intracellular Trafficking of Fluorescent Iron Oxide Nanoparticles by Nanoparticle Pulse-Chase Experiments in C6 Glioma Cells.
    Willmann W; Dringen R
    Neurochem Res; 2018 Nov; 43(11):2055-2071. PubMed ID: 30196349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen species generation by the ethylene-bis-dithiocarbamate (EBDC) fungicide mancozeb and its contribution to neuronal toxicity in mesencephalic cells.
    Domico LM; Cooper KR; Bernard LP; Zeevalk GD
    Neurotoxicology; 2007 Nov; 28(6):1079-91. PubMed ID: 17597214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of silver nanoparticles on the interactions of neuron- and glia-like cells: Toxicity, uptake mechanisms, and lysosomal tracking.
    Hsiao IL; Hsieh YK; Chuang CY; Wang CF; Huang YJ
    Environ Toxicol; 2017 Jun; 32(6):1742-1753. PubMed ID: 28181394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Morphology on Iron Oxide Nanoparticles-Induced Inflammasome Activation in Macrophages.
    Liu L; Sha R; Yang L; Zhao X; Zhu Y; Gao J; Zhang Y; Wen LP
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41197-41206. PubMed ID: 30398340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Choose your cell model wisely: The in vitro nanoneurotoxicity of differentially coated iron oxide nanoparticles for neural cell labeling.
    Joris F; Valdepérez D; Pelaz B; Wang T; Doak SH; Manshian BB; Soenen SJ; Parak WJ; De Smedt SC; Raemdonck K
    Acta Biomater; 2017 Jun; 55():204-213. PubMed ID: 28373085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.