BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 26287375)

  • 21. Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes.
    Bulcke F; Thiel K; Dringen R
    Nanotoxicology; 2014 Nov; 8(7):775-85. PubMed ID: 23889294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accumulation of non-transferrin-bound iron by neurons, astrocytes, and microglia.
    Bishop GM; Dang TN; Dringen R; Robinson SR
    Neurotox Res; 2011 Apr; 19(3):443-51. PubMed ID: 20431983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Induction of microglial reactive oxygen species production by the organochlorinated pesticide dieldrin.
    Mao H; Fang X; Floyd KM; Polcz JE; Zhang P; Liu B
    Brain Res; 2007 Dec; 1186():267-74. PubMed ID: 17999924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic field-induced acceleration of the accumulation of magnetic iron oxide nanoparticles by cultured brain astrocytes.
    Lamkowsky MC; Geppert M; Schmidt MM; Dringen R
    J Biomed Mater Res A; 2012 Feb; 100(2):323-34. PubMed ID: 22065542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microglial reaction induced by noncytotoxic methylmercury treatment leads to neuroprotection via interactions with astrocytes and IL-6 release.
    Eskes C; Honegger P; Juillerat-Jeanneret L; Monnet-Tschudi F
    Glia; 2002 Jan; 37(1):43-52. PubMed ID: 11746782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical transformation and cytotoxicity of iron oxide nanoparticles (IONPs) accumulated in mitochondria.
    Ruan L; Li H; Zhang J; Zhou M; Huang H; Dong J; Li J; Zhao F; Wu Z; Chen J; Chai Z; Hu Y
    Talanta; 2023 Jan; 251():123770. PubMed ID: 35961081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of copper accumulation and copper-induced toxicity by antioxidants and copper chelators in cultured primary brain astrocytes.
    Bulcke F; Santofimia-Castaño P; Gonzalez-Mateos A; Dringen R
    J Trace Elem Med Biol; 2015 Oct; 32():168-76. PubMed ID: 26302925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Local Administration of Iron Oxide Nanoparticles in the Prefrontal Cortex, Striatum, and Hippocampus of Rats.
    Irrsack E; Schuller J; Petters C; Willmann W; Dringen R; Koch M
    Neurotox Res; 2021 Dec; 39(6):2056-2071. PubMed ID: 34705254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of neutral-surface iron oxide nanoparticles on cellular uptake and signaling pathways.
    Kim E; Kim JM; Kim L; Choi SJ; Park IS; Han JY; Chu YC; Choi ES; Na K; Hong SS
    Int J Nanomedicine; 2016; 11():4595-4607. PubMed ID: 27695320
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The flavonoid rutin induces astrocyte and microglia activation and regulates TNF-alpha and NO release in primary glial cell cultures.
    Silva AR; Pinheiro AM; Souza CS; Freitas SR; Vasconcellos V; Freire SM; Velozo ES; Tardy M; El-Bachá RS; Costa MF; Costa SL
    Cell Biol Toxicol; 2008 Jan; 24(1):75-86. PubMed ID: 17549591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fumonisin B1 induces necrotic cell death in BV-2 cells and murine cultured astrocytes and is antiproliferative in BV-2 cells while N2A cells and primary cortical neurons are resistant.
    Osuchowski MF; Sharma RP
    Neurotoxicology; 2005 Dec; 26(6):981-92. PubMed ID: 16005069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iron accumulation, iron-mediated toxicity and altered levels of ferritin and transferrin receptor in cultured astrocytes during incubation with ferric ammonium citrate.
    Hoepken HH; Korten T; Robinson SR; Dringen R
    J Neurochem; 2004 Mar; 88(5):1194-202. PubMed ID: 15009675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microglia Determine Brain Region-Specific Neurotoxic Responses to Chemically Functionalized Carbon Nanotubes.
    Bussy C; Al-Jamal KT; Boczkowski J; Lanone S; Prato M; Bianco A; Kostarelos K
    ACS Nano; 2015 Aug; 9(8):7815-30. PubMed ID: 26043308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time- and activation-dependency of the protective effect of microglia on astrocytes exposed to peroxide-induced oxidative stress.
    Armbrust E; Röhl C
    Toxicol In Vitro; 2008 Aug; 22(5):1399-404. PubMed ID: 18367369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidized high-density lipoprotein induces neuron death.
    Keller JN; Hanni KB; Kindy MS
    Exp Neurol; 2000 Feb; 161(2):621-30. PubMed ID: 10686081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toxicity of ricin and volkensin, two ribosome-inactivating proteins, to microglia, astrocyte, and neuron cultures.
    Sparapani M; Buonamici L; Ciani E; Battelli MG; Ceccarelli G; Stirpe F; Contestabile A
    Glia; 1997 Jul; 20(3):203-9. PubMed ID: 9215729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurons and glial cells of the rat organum vasculosum laminae terminalis directly respond to lipopolysaccharide and pyrogenic cytokines.
    Ott D; Murgott J; Rafalzik S; Wuchert F; Schmalenbeck B; Roth J; Gerstberger R
    Brain Res; 2010 Dec; 1363():93-106. PubMed ID: 20883673
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microglia, a potential source of neurons, astrocytes, and oligodendrocytes.
    Yokoyama A; Yang L; Itoh S; Mori K; Tanaka J
    Glia; 2004 Jan; 45(1):96-104. PubMed ID: 14648550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuroprotective effects of prostaglandin E2 or cAMP against microglial and neuronal free radical mediated toxicity associated with inflammation.
    Kim EJ; Kwon KJ; Park JY; Lee SH; Moon CH; Baik EJ
    J Neurosci Res; 2002 Oct; 70(1):97-107. PubMed ID: 12237868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential response to lead toxicity in rat primary microglia and astrocytes.
    Peng J; Zhou F; Wang Y; Xu Y; Zhang H; Zou F; Meng X
    Toxicol Appl Pharmacol; 2019 Jan; 363():64-71. PubMed ID: 30476502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.