BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 26287573)

  • 1. Slope-Dependent Cell Motility Enhancements at the Walls of PEG-Hydrogel Microgroove Structures.
    Kushiro K; Sakai T; Takai M
    Langmuir; 2015 Sep; 31(37):10215-22. PubMed ID: 26287573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K; Birch MA
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Conductive and Micropatterned PEG-Based Hydrogel Enabling the Topographical and Electrical Stimulation of Myoblasts.
    Gong HY; Park J; Kim W; Kim J; Lee JY; Koh WG
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):47695-47706. PubMed ID: 31794187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional photolithographic micropatterning: a novel tool to probe the complexities of cell migration.
    Hoffmann JC; West JL
    Integr Biol (Camb); 2013 May; 5(5):817-27. PubMed ID: 23460015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration.
    Frith JE; Menzies DJ; Cameron AR; Ghosh P; Whitehead DL; Gronthos S; Zannettino AC; Cooper-White JJ
    Biomaterials; 2014 Jan; 35(4):1150-62. PubMed ID: 24215733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage.
    Liu SQ; Tian Q; Hedrick JL; Po Hui JH; Ee PL; Yang YY
    Biomaterials; 2010 Oct; 31(28):7298-307. PubMed ID: 20615545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micropatterning of a nanoporous alumina membrane with poly(ethylene glycol) hydrogel to create cellular micropatterns on nanotopographic substrates.
    Lee HJ; Kim DN; Park S; Lee Y; Koh WG
    Acta Biomater; 2011 Mar; 7(3):1281-9. PubMed ID: 21056702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration of cell motility dynamics through collagen fiber density in photopolymerized polyethylene glycol hydrogels.
    Akalin OB; Bayraktar H
    Int J Biol Macromol; 2020 Aug; 157():414-423. PubMed ID: 32344093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined influence of substrate stiffness and surface topography on the antiadhesive properties of Acr-sP(EO-stat-PO) hydrogels.
    Schulte VA; Diez M; Hu Y; Möller M; Lensen MC
    Biomacromolecules; 2010 Dec; 11(12):3375-83. PubMed ID: 21033738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of matrix characteristics on fibroblast proliferation in 3D gels.
    Bott K; Upton Z; Schrobback K; Ehrbar M; Hubbell JA; Lutolf MP; Rizzi SC
    Biomaterials; 2010 Nov; 31(32):8454-64. PubMed ID: 20684983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration.
    Raeber GP; Lutolf MP; Hubbell JA
    Biophys J; 2005 Aug; 89(2):1374-88. PubMed ID: 15923238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteolytically degradable hydrogels with a fluorogenic substrate for studies of cellular proteolytic activity and migration.
    Lee SH; Miller JS; Moon JJ; West JL
    Biotechnol Prog; 2005; 21(6):1736-41. PubMed ID: 16321059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of soluble PEG-OH incorporation in a 3D cell-laden PEG-fibrinogen (PF) hydrogel on smooth muscle cell morphology and growth.
    Lee BH; Tin SP; Chaw SY; Cao Y; Xia Y; Steele TW; Seliktar D; Bianco-Peled H; Venkatraman SS
    J Biomater Sci Polym Ed; 2014; 25(4):394-409. PubMed ID: 24304216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell transfer printing from patterned poly(ethylene glycol)-oleyl surfaces to biological hydrogels for rapid and efficient cell micropatterning.
    Takano T; Yamaguchi S; Matsunuma E; Komiya S; Shinkai M; Takezawa T; Nagamune T
    Biotechnol Bioeng; 2012 Jan; 109(1):244-51. PubMed ID: 21809333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in bioactive hydrogels to probe and direct cell fate.
    DeForest CA; Anseth KS
    Annu Rev Chem Biomol Eng; 2012; 3():421-44. PubMed ID: 22524507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatocyte viability and protein expression within hydrogel microstructures.
    Itle LJ; Koh WG; Pishko MV
    Biotechnol Prog; 2005; 21(3):926-32. PubMed ID: 15932275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PEG-phosphorylcholine hydrogels as tunable and versatile platforms for mechanobiology.
    Herrick WG; Nguyen TV; Sleiman M; McRae S; Emrick TS; Peyton SR
    Biomacromolecules; 2013 Jul; 14(7):2294-304. PubMed ID: 23738528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of hepatocellular function within PEG hydrogels.
    Underhill GH; Chen AA; Albrecht DR; Bhatia SN
    Biomaterials; 2007 Jan; 28(2):256-70. PubMed ID: 16979755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of matrix metalloproteinases in regulating neuronal and nonneuronal cell invasion into PEGylated fibrinogen hydrogels.
    Sarig-Nadir O; Seliktar D
    Biomaterials; 2010 Sep; 31(25):6411-6. PubMed ID: 20537384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of macromer weight percent on neural cell growth in 2D and 3D nondegradable PEG hydrogel culture.
    Lampe KJ; Mooney RG; Bjugstad KB; Mahoney MJ
    J Biomed Mater Res A; 2010 Sep; 94(4):1162-71. PubMed ID: 20694983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.