These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 26287573)

  • 21. 3D culture of adipose-tissue-derived stem cells mainly leads to chondrogenesis in poly(ethylene glycol)-poly(L-alanine) diblock copolymer thermogel.
    Yeon B; Park MH; Moon HJ; Kim SJ; Cheon YW; Jeong B
    Biomacromolecules; 2013 Sep; 14(9):3256-66. PubMed ID: 23909492
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of hyperbranched structure of polycaprolactone/poly(ethylene glycol) polyurethane block copolymers by glycerol and their hydrogels for potential cell delivery.
    Li Z; Li J
    J Phys Chem B; 2013 Nov; 117(47):14763-74. PubMed ID: 24175974
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and characterization of PEG-based drug-responsive biohybrid hydrogels.
    Gübeli RJ; Ehrbar M; Fussenegger M; Friedrich C; Weber W
    Macromol Rapid Commun; 2012 Aug; 33(15):1280-5. PubMed ID: 22648969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biological and mechanical implications of PEGylating proteins into hydrogel biomaterials.
    Gonen-Wadmany M; Goldshmid R; Seliktar D
    Biomaterials; 2011 Sep; 32(26):6025-33. PubMed ID: 21669457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polylysine-modified PEG-based hydrogels to enhance the neuro-electrode interface.
    Rao SS; Han N; Winter JO
    J Biomater Sci Polym Ed; 2011; 22(4-6):611-25. PubMed ID: 20566048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness.
    Keeney M; Onyiah S; Zhang Z; Tong X; Han LH; Yang F
    Biomaterials; 2013 Dec; 34(37):9657-65. PubMed ID: 24011715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanostructuring biosynthetic hydrogels for tissue engineering: a cellular and structural analysis.
    Frisman I; Seliktar D; Bianco-Peled H
    Acta Biomater; 2012 Jan; 8(1):51-60. PubMed ID: 21855662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels.
    Li Z; Zhang Z; Liu KL; Ni X; Li J
    Biomacromolecules; 2012 Dec; 13(12):3977-89. PubMed ID: 23167676
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differences in Three-Dimensional Geometric Recognition by Non-Cancerous and Cancerous Epithelial Cells on Microgroove-Based Topography.
    Kushiro K; Yaginuma T; Ryo A; Takai M
    Sci Rep; 2017 Jun; 7(1):4244. PubMed ID: 28652607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogels for in vivo-like three-dimensional cellular studies.
    DeVolder R; Kong HJ
    Wiley Interdiscip Rev Syst Biol Med; 2012; 4(4):351-65. PubMed ID: 22615143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Infiltration of mesenchymal stem cells into PEGDA hydrogel.
    Yourek G; Xin X; Reilly GC; Mao JJ
    Biomed Mater Eng; 2014; 24(5):1803-15. PubMed ID: 25201394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional PEG-based hydrogel.
    Cho NJ; Elazar M; Xiong A; Lee W; Chiao E; Baker J; Frank CW; Glenn JS
    Biomed Mater; 2009 Feb; 4(1):011001. PubMed ID: 18981544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional pattering of poly (ethylene Glycol) hydrogels through surface-initiated photopolymerization.
    Papavasiliou G; Songprawat P; Pérez-Luna V; Hammes E; Morris M; Chiu YC; Brey E
    Tissue Eng Part C Methods; 2008 Jun; 14(2):129-40. PubMed ID: 18471086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM; Cole AA; Bjugstad KB; Mahoney MJ
    Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peptide-grafted poly(ethylene glycol) hydrogels support dynamic adhesion of endothelial progenitor cells.
    Seeto WJ; Tian Y; Lipke EA
    Acta Biomater; 2013 Sep; 9(9):8279-89. PubMed ID: 23770139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates.
    Skardal A; Zhang J; Prestwich GD
    Biomaterials; 2010 Aug; 31(24):6173-81. PubMed ID: 20546891
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An in situ forming collagen-PEG hydrogel for tissue regeneration.
    Sargeant TD; Desai AP; Banerjee S; Agawu A; Stopek JB
    Acta Biomater; 2012 Jan; 8(1):124-32. PubMed ID: 21911086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hybrid inverse opals for regulating cell adhesion and orientation.
    Lu J; Zheng F; Cheng Y; Ding H; Zhao Y; Gu Z
    Nanoscale; 2014 Sep; 6(18):10650-6. PubMed ID: 25088946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unique Cancer Migratory Behaviors in Confined Spaces of Microgroove Topography with Acute Wall Angles.
    Yaginuma T; Kushiro K; Takai M
    Sci Rep; 2020 Apr; 10(1):6110. PubMed ID: 32273556
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unique biomaterial compositions direct bone marrow stem cells into specific chondrocytic phenotypes corresponding to the various zones of articular cartilage.
    Nguyen LH; Kudva AK; Guckert NL; Linse KD; Roy K
    Biomaterials; 2011 Feb; 32(5):1327-38. PubMed ID: 21067807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.