These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26287658)

  • 1. Biocatalytic synthesis of 3,4,5,3',5'-pentahydroxy-trans-stilbene from piceatannol by two-component flavin-dependent monooxygenase HpaBC.
    Furuya T; Sai M; Kino K
    Biosci Biotechnol Biochem; 2016; 80(1):193-8. PubMed ID: 26287658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient monooxygenase-catalyzed piceatannol production: Application of cyclodextrins for reducing product inhibition.
    Furuya T; Sai M; Kino K
    J Biosci Bioeng; 2018 Oct; 126(4):478-481. PubMed ID: 29764766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of Bioactive 3'-Hydroxystilbene Compounds Using the Flavin-Dependent Monooxygenase Sam5.
    Heo KT; Lee B; Son S; Ahn JS; Jang JH; Hong YS
    J Microbiol Biotechnol; 2018 Jul; 28(7):1105-1111. PubMed ID: 30021423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of Gram-negative and Gram-positive bacteria capable of producing piceatannol from resveratrol.
    Furuya T; Imaki N; Shigei K; Sai M; Kino K
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5811-5820. PubMed ID: 31093702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotechnological production of plant-specific hydroxylated phenylpropanoids.
    Lin Y; Yan Y
    Biotechnol Bioeng; 2014 Sep; 111(9):1895-9. PubMed ID: 24752627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular pathway engineering for resveratrol and piceatannol production in engineered Escherichia coli.
    Shrestha A; Pandey RP; Pokhrel AR; Dhakal D; Chu LL; Sohng JK
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9691-9706. PubMed ID: 30178203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives.
    Furuya T; Kino K
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1145-54. PubMed ID: 23666444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxylation of Resveratrol with DoxA In Vitro: An Enzyme with the Potential for the Bioconversion of a Bioactive Stilbene.
    Rimal H; Yu SC; Lee JH; Tokutaro Y; Oh TJ
    J Microbiol Biotechnol; 2018 Apr; 28(4):561-565. PubMed ID: 29385664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterologous expression of tyrosinase (MelC2) from Streptomyces avermitilis MA4680 in E. coli and its application for ortho-hydroxylation of resveratrol to produce piceatannol.
    Lee N; Lee SH; Baek K; Kim BG
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):7915-24. PubMed ID: 26036705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postharvest accumulation of resveratrol and piceatannol in sugarcane with enhanced antioxidant activity.
    Boue SM; Shih BY; Burow ME; Eggleston G; Lingle S; Pan YB; Daigle K; Bhatnagar D
    J Agric Food Chem; 2013 Sep; 61(35):8412-9. PubMed ID: 23931742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of the human metabolite piceatannol from the anticancer-preventive agent resveratrol by bacterial cytochrome P450 BM3.
    Kim DH; Ahn T; Jung HC; Pan JG; Yun CH
    Drug Metab Dispos; 2009 May; 37(5):932-6. PubMed ID: 19237510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli.
    Watts KT; Lee PC; Schmidt-Dannert C
    BMC Biotechnol; 2006 Mar; 6():22. PubMed ID: 16551366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of the 4-Hydroxyphenylacetate-3-hydroxylase Substrate Pocket to Increase Activity towards Resveratrol.
    Zhang Q; Jin Y; Yang K; Hu S; Lv C; Huang J; Mei J; Zhao W; Mei L
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of bioactive hydroxyflavones by using monooxygenase from Saccharothrix espanaensis.
    Lee H; Kim BG; Ahn JH
    J Biotechnol; 2014 Apr; 176():11-7. PubMed ID: 24560623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Piceatannol and resveratrol share inhibitory effects on hydrogen peroxide release, monoamine oxidase and lipogenic activities in adipose tissue, but differ in their antilipolytic properties.
    Les F; Deleruyelle S; Cassagnes LE; Boutin JA; Balogh B; Arbones-Mainar JM; Biron S; Marceau P; Richard D; Nepveu F; Mauriège P; Carpéné C
    Chem Biol Interact; 2016 Oct; 258():115-25. PubMed ID: 27475863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of the Biosynthesis of B-Ring
    Wang L; Ma X; Ruan H; Chen Y; Gao L; Lei T; Li Y; Gui L; Guo L; Xia T; Wang Y
    Molecules; 2021 May; 26(10):. PubMed ID: 34069009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regioselective hydroxylation of trans-resveratrol via inhibition of tyrosinase from Streptomyces avermitilis MA4680.
    Lee N; Kim EJ; Kim BG
    ACS Chem Biol; 2012 Oct; 7(10):1687-92. PubMed ID: 22769580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological activity of piceatannol: leaving the shadow of resveratrol.
    Piotrowska H; Kucinska M; Murias M
    Mutat Res; 2012; 750(1):60-82. PubMed ID: 22108298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of stilbenoids from the callus of Arachis hypogaea: a novel source of the anticancer compound piceatannol.
    Ku KL; Chang PS; Cheng YC; Lien CY
    J Agric Food Chem; 2005 May; 53(10):3877-81. PubMed ID: 15884811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo biosynthesis of pterostilbene in an Escherichia coli strain using a new resveratrol O-methyltransferase from Arabidopsis.
    Heo KT; Kang SY; Hong YS
    Microb Cell Fact; 2017 Feb; 16(1):30. PubMed ID: 28202018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.