These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26288239)

  • 1. Gene Function Prediction from Functional Association Networks Using Kernel Partial Least Squares Regression.
    Lehtinen S; Lees J; Bähler J; Shawe-Taylor J; Orengo C
    PLoS One; 2015; 10(8):e0134668. PubMed ID: 26288239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function.
    Mostafavi S; Ray D; Warde-Farley D; Grouios C; Morris Q
    Genome Biol; 2008; 9 Suppl 1(Suppl 1):S4. PubMed ID: 18613948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting ontology graph for predicting sparsely annotated gene function.
    Wang S; Cho H; Zhai C; Berger B; Peng J
    Bioinformatics; 2015 Jun; 31(12):i357-64. PubMed ID: 26072504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data.
    Bastien P; Bertrand F; Meyer N; Maumy-Bertrand M
    Bioinformatics; 2015 Feb; 31(3):397-404. PubMed ID: 25286920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying potential association on gene-disease network via dual hypergraph regularized least squares.
    Yang H; Ding Y; Tang J; Guo F
    BMC Genomics; 2021 Aug; 22(1):605. PubMed ID: 34372777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. bLARS: An Algorithm to Infer Gene Regulatory Networks.
    Singh N; Vidyasagar M
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(2):301-14. PubMed ID: 27045829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico gene function prediction using ontology-based pattern identification.
    Zhou Y; Young JA; Santrosyan A; Chen K; Yan SF; Winzeler EA
    Bioinformatics; 2005 Apr; 21(7):1237-45. PubMed ID: 15531612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ArrayExpress gene expression database: a software engineering and implementation perspective.
    Sarkans U; Parkinson H; Lara GG; Oezcimen A; Sharma A; Abeygunawardena N; Contrino S; Holloway E; Rocca-Serra P; Mukherjee G; Shojatalab M; Kapushesky M; Sansone SA; Farne A; Rayner T; Brazma A
    Bioinformatics; 2005 Apr; 21(8):1495-501. PubMed ID: 15564302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network.
    Lin L; Yang T; Fang L; Yang J; Yang F; Zhao J
    BMC Syst Biol; 2017 Dec; 11(1):121. PubMed ID: 29212543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving protein function prediction methods with integrated literature data.
    Gabow AP; Leach SM; Baumgartner WA; Hunter LE; Goldberg DS
    BMC Bioinformatics; 2008 Apr; 9():198. PubMed ID: 18412966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing diversity towards the reconstructing of large scale gene regulatory networks.
    Hase T; Ghosh S; Yamanaka R; Kitano H
    PLoS Comput Biol; 2013; 9(11):e1003361. PubMed ID: 24278007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A statistical framework for genomic data fusion.
    Lanckriet GR; De Bie T; Cristianini N; Jordan MI; Noble WS
    Bioinformatics; 2004 Nov; 20(16):2626-35. PubMed ID: 15130933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Combined PLS and Negative Binomial Regression Model for Inferring Association Networks from Next-Generation Sequencing Count Data.
    Pesonen M; Nevalainen J; Potter S; Datta S; Datta S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):760-773. PubMed ID: 28186904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Maximum A Posteriori Probability and Time-Varying Approach for Inferring Gene Regulatory Networks from Time Course Gene Microarray Data.
    Chan SC; Zhang L; Wu HC; Tsui KM
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(1):123-35. PubMed ID: 26357083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting protein functions by applying predicate logic to biomedical literature.
    Taha K; Iraqi Y; Al Aamri A
    BMC Bioinformatics; 2019 Feb; 20(1):71. PubMed ID: 30736739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracting expression modules from perturbational gene expression compendia.
    Maere S; Van Dijck P; Kuiper M
    BMC Syst Biol; 2008 Apr; 2():33. PubMed ID: 18402676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A graph-theoretic modeling on GO space for biological interpretation of gene clusters.
    Lee SG; Hur JU; Kim YS
    Bioinformatics; 2004 Feb; 20(3):381-8. PubMed ID: 14960465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.
    Zuo Y; Cui Y; Yu G; Li R; Ressom HW
    BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LEGO: a novel method for gene set over-representation analysis by incorporating network-based gene weights.
    Dong X; Hao Y; Wang X; Tian W
    Sci Rep; 2016 Jan; 6():18871. PubMed ID: 26750448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.