These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 26288251)

  • 1. Design of high-performance anti-adhesion agent using injectable gel with an anti-oxidative stress function.
    Nakagawa H; Matsumoto Y; Matsumoto Y; Miwa Y; Nagasaki Y
    Biomaterials; 2015 Nov; 69():165-73. PubMed ID: 26288251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-active injectable gel using thermo-responsive nanoscale polyion complex flower micelle for noninvasive treatment of local inflammation.
    Pua ML; Yoshitomi T; Chonpathompikunlert P; Hirayama A; Nagasaki Y
    J Control Release; 2013 Dec; 172(3):914-20. PubMed ID: 24157475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a long-acting, protein-loaded, redox-active, injectable gel formed by a polyion complex for local protein therapeutics.
    Ishii S; Kaneko J; Nagasaki Y
    Biomaterials; 2016 Apr; 84():210-218. PubMed ID: 26828685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a local anesthetic lidocaine-loaded redox-active injectable gel for postoperative pain management.
    Nagasaki Y; Mizukoshi Y; Gao Z; Feliciano CP; Chang K; Sekiyama H; Kimura H
    Acta Biomater; 2017 Jul; 57():127-135. PubMed ID: 28457963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox-active injectable gel using polyion complex to achieve sustained release of exenatide and enhance therapeutic efficacy for the treatment of type 2 diabetes.
    Ishii S; Sakaue S; Nagasaki Y
    J Biomed Mater Res A; 2019 May; 107(5):1107-1113. PubMed ID: 30720240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel antioxidative nanotherapeutics in a rat periodontitis model: Reactive oxygen species scavenging by redox injectable gel suppresses alveolar bone resorption.
    Saita M; Kaneko J; Sato T; Takahashi SS; Wada-Takahashi S; Kawamata R; Sakurai T; Lee MC; Hamada N; Kimoto K; Nagasaki Y
    Biomaterials; 2016 Jan; 76():292-301. PubMed ID: 26559357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical properties of pH-controlled polyion complex (PIC) micelles of poly(acrylic acid)-based double hydrophilic block copolymers and various polyamines.
    Warnant J; Marcotte N; Reboul J; Layrac G; Aqil A; Jerôme C; Lerner DA; Gérardin C
    Anal Bioanal Chem; 2012 May; 403(5):1395-404. PubMed ID: 22453608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prevention of postsurgical cauterization-induced peritoneal adhesions by biodegradable and thermosensitive micelles.
    Gong CY; Wu QJ; Liao JF; Qi TT; Yang B; Wang YJ; Guo G; Luo F; Zhao X; Wei YQ; Qian ZY
    J Biomed Nanotechnol; 2013 Dec; 9(12):1984-95. PubMed ID: 24266254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel angiogenesis therapeutics by redox injectable hydrogel - Regulation of local nitric oxide generation for effective cardiovascular therapy.
    Vong LB; Bui TQ; Tomita T; Sakamoto H; Hiramatsu Y; Nagasaki Y
    Biomaterials; 2018 Jun; 167():143-152. PubMed ID: 29571050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue anti-adhesion potential of ibuprofen-loaded PLLA-PEG diblock copolymer films.
    Lee JH; Go AK; Oh SH; Lee KE; Yuk SH
    Biomaterials; 2005 Feb; 26(6):671-8. PubMed ID: 15282145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable biocompatible and biodegradable pH-responsive hollow particle gels containing poly(acrylic acid): the effect of copolymer composition on gel properties.
    Halacheva SS; Adlam DJ; Hendow EK; Freemont TJ; Hoyland J; Saunders BR
    Biomacromolecules; 2014 May; 15(5):1814-27. PubMed ID: 24684558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyion complex micelle MRI contrast agents from poly(ethylene glycol)-b-poly(l-lysine) block copolymers having Gd-DOTA; preparations and their control of T(1)-relaxivities and blood circulation characteristics.
    Shiraishi K; Kawano K; Maitani Y; Yokoyama M
    J Control Release; 2010 Dec; 148(2):160-7. PubMed ID: 20804796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species scavenging with a biodegradable, thermally responsive hydrogel compatible with soft tissue injection.
    Zhu Y; Matsumura Y; Velayutham M; Foley LM; Hitchens TK; Wagner WR
    Biomaterials; 2018 Sep; 177():98-112. PubMed ID: 29886387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postoperative pericardial adhesion prevention using Carbylan-SX in a rabbit model.
    Connors RC; Muir JJ; Liu Y; Reiss GR; Kouretas PC; Whitten MG; Sorenson TK; Prestwich GD; Bull DA
    J Surg Res; 2007 Jun; 140(2):237-42. PubMed ID: 17509269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevention of desiccation induced postsurgical adhesion by thermosensitive micelles.
    Zhang W; Wu Q; Li L; Cui T; Sun L; Wang N; Liu L; Li X; Gong C
    Colloids Surf B Biointerfaces; 2014 Oct; 122():309-315. PubMed ID: 25064481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. siRNA delivery from triblock copolymer micelles with spatially-ordered compartments of PEG shell, siRNA-loaded intermediate layer, and hydrophobic core.
    Kim HJ; Miyata K; Nomoto T; Zheng M; Kim A; Liu X; Cabral H; Christie RJ; Nishiyama N; Kataoka K
    Biomaterials; 2014 May; 35(15):4548-56. PubMed ID: 24613051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen species-scavenging nanomedicines for the treatment of oxidative stress injuries.
    Yoshitomi T; Nagasaki Y
    Adv Healthc Mater; 2014 Aug; 3(8):1149-61. PubMed ID: 24482427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoresponsive gelling behavior of concentrated alumina suspensions containing poly(acrylic acid) and PEO-PPO-PEO copolymer.
    Kondo A; Xu H; Abe H; Naito M
    J Colloid Interface Sci; 2012 May; 373(1):20-6. PubMed ID: 22014422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitroxide radicals and nanoparticles: a partnership for nanomedicine radical delivery.
    Nagasaki Y
    Ther Deliv; 2012 Feb; 3(2):165-79. PubMed ID: 22834195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox nanoparticle therapeutics to cancer--increase in therapeutic effect of doxorubicin, suppressing its adverse effect.
    Yoshitomi T; Ozaki Y; Thangavel S; Nagasaki Y
    J Control Release; 2013 Nov; 172(1):137-143. PubMed ID: 23958903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.