These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26289020)

  • 21. Structural Insights into the Thermophilic Adaption Mechanism of Endo-1,4-β-Xylanase from Caldicellulosiruptor owensensis.
    Liu X; Liu T; Zhang Y; Xin F; Mi S; Wen B; Gu T; Shi X; Wang F; Sun L
    J Agric Food Chem; 2018 Jan; 66(1):187-193. PubMed ID: 29236500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrolytic properties of a hybrid xylanase and its parents.
    Sun JY; Liu MQ; Weng XY
    Appl Biochem Biotechnol; 2009 Mar; 152(3):428-39. PubMed ID: 18688581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic hydrolysis of wheat arabinoxylan by a recombinant "minimal" enzyme cocktail containing beta-xylosidase and novel endo-1,4-beta-xylanase and alpha-l-arabinofuranosidase activities.
    Sørensen HR; Pedersen S; Jørgensen CT; Meyer AS
    Biotechnol Prog; 2007; 23(1):100-7. PubMed ID: 17269676
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics and substrate selectivity of a Triticum aestivum xylanase inhibitor (TAXI) resistant D11F/R122D variant of Bacillus subtilis XynA xylanase.
    Rasmussen LE; Sørensen JF; Meyer AS
    J Biotechnol; 2010 Apr; 146(4):207-14. PubMed ID: 20188130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Paenibacillus curdlanolyticus B-6 xylanase Xyn10C capable of producing a doubly arabinose-substituted xylose, α-L-Araf-(1→2)-[α-L-Araf-(1→3)]-D-Xylp, from rye arabinoxylan.
    Imjongjairak S; Jommuengbout P; Karpilanondh P; Katsuzaki H; Sakka M; Kimura T; Pason P; Tachaapaikoon C; Romsaiyud J; Ratanakhanokchai K; Sakka K
    Enzyme Microb Technol; 2015 May; 72():1-9. PubMed ID: 25837501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A typical endo-xylanase from Streptomyces rameus L2001 and its unique characteristics in xylooligosaccharide production.
    Li X; Li E; Zhu Y; Teng C; Sun B; Song H; Yang R
    Carbohydr Res; 2012 Oct; 359():30-6. PubMed ID: 22925761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural comparison, docking and substrate interaction study of modeled endo-1, 4-beta xylanase enzyme of Bacillus brevis.
    Mathur N; Goswami GK; Pathak AN
    J Mol Graph Model; 2017 Jun; 74():337-343. PubMed ID: 28475970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Xylooligosaccharides from hardwood and cereal xylans produced by a thermostable xylanase as carbon sources for Lactobacillus brevis and Bifidobacterium adolescentis.
    Falck P; Precha-Atsawanan S; Grey C; Immerzeel P; Stålbrand H; Adlercreutz P; Karlsson EN
    J Agric Food Chem; 2013 Jul; 61(30):7333-40. PubMed ID: 23822770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-level expression of a xylanase gene from the thermophilic fungus Paecilomyces thermophila in Pichia pastoris.
    Fan G; Katrolia P; Jia H; Yang S; Yan Q; Jiang Z
    Biotechnol Lett; 2012 Nov; 34(11):2043-8. PubMed ID: 22782269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alkali-stable GH11 endo-β-1,4 xylanase (XynB) from
    Monica P; Kapoor M
    Prep Biochem Biotechnol; 2021; 51(5):475-487. PubMed ID: 33043796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improvement of the catalytic characteristics of a salt-tolerant GH10 xylanase from Streptomyce rochei L10904.
    Li Q; Sun B; Li X; Xiong K; Xu Y; Yang R; Hou J; Teng C
    Int J Biol Macromol; 2018 Feb; 107(Pt B):1447-1455. PubMed ID: 29030195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of disulfide bridge on hydrolytic characteristics of xylanase from Penicillium janthinellum.
    Li Q; Wu Q; Sun B; Yang R; Hou X; Teng C; Zhang C; Li X
    Int J Biol Macromol; 2018 Dec; 120(Pt A):405-413. PubMed ID: 30145159
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification and characterization of a GH11 xylanase from biobutanol-producing Clostridium beijerinckii G117.
    Ng CH; He J; Yang KL
    Appl Biochem Biotechnol; 2015 Mar; 175(6):2832-44. PubMed ID: 25564206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structures of the sugar complexes of Streptomyces olivaceoviridis E-86 xylanase: sugar binding structure of the family 13 carbohydrate binding module.
    Fujimoto Z; Kuno A; Kaneko S; Kobayashi H; Kusakabe I; Mizuno H
    J Mol Biol; 2002 Feb; 316(1):65-78. PubMed ID: 11829503
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of an endo-1,4-beta-xylanase of Ustilago maydis.
    Geiser E; Wierckx N; Zimmermann M; Blank LM
    BMC Biotechnol; 2013 Jul; 13():59. PubMed ID: 23889751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transformation of xylan into value-added biocommodities using Thermobacillus composti GH10 xylanase.
    Sepulchro AGV; Pellegrini VOA; Briganti L; de Araujo EA; de Araujo SS; Polikarpov I
    Carbohydr Polym; 2020 Nov; 247():116714. PubMed ID: 32829841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The thermophilic biomass-degrading fungus Thielavia terrestris Co3Bag1 produces a hyperthermophilic and thermostable β-1,4-xylanase with exo- and endo-activity.
    García-Huante Y; Cayetano-Cruz M; Santiago-Hernández A; Cano-Ramírez C; Marsch-Moreno R; Campos JE; Aguilar-Osorio G; Benitez-Cardoza CG; Trejo-Estrada S; Hidalgo-Lara ME
    Extremophiles; 2017 Jan; 21(1):175-186. PubMed ID: 27900528
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A family 10 Thermoascus aurantiacus xylanase utilizes arabinose decorations of xylan as significant substrate specificity determinants.
    Vardakou M; Flint J; Christakopoulos P; Lewis RJ; Gilbert HJ; Murray JW
    J Mol Biol; 2005 Oct; 352(5):1060-7. PubMed ID: 16140328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of Two New Endo-β-1,4-xylanases from Eupenicillium parvum 4-14 and Their Applications for Production of Feruloylated Oligosaccharides.
    Long L; Xu M; Shi Y; Lin Q; Wang J; Ding S
    Appl Biochem Biotechnol; 2018 Dec; 186(4):816-833. PubMed ID: 29740799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving special hydrolysis characterization into Talaromyces thermophilus F1208 xylanase by engineering of N-terminal extension and site-directed mutagenesis in C-terminal.
    Li Q; Sun B; Xiong K; Teng C; Xu Y; Li L; Li X
    Int J Biol Macromol; 2017 Mar; 96():451-458. PubMed ID: 28013010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.