These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
838 related articles for article (PubMed ID: 26289142)
1. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes. Sousa MF; Silva MM; Giroux D; Hashimura Y; Wesselschmidt R; Lee B; Roldão A; Carrondo MJ; Alves PM; Serra M Biotechnol Prog; 2015; 31(6):1600-12. PubMed ID: 26289142 [TBL] [Abstract][Full Text] [Related]
2. Expansion of Human Mesenchymal Stem Cells in a Microcarrier Bioreactor. Tsai AC; Ma T Methods Mol Biol; 2016; 1502():77-86. PubMed ID: 27032950 [TBL] [Abstract][Full Text] [Related]
3. Systematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors. Rafiq QA; Coopman K; Nienow AW; Hewitt CJ Biotechnol J; 2016 Mar; 11(4):473-86. PubMed ID: 26632496 [TBL] [Abstract][Full Text] [Related]
4. A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells. Dos Santos F; Campbell A; Fernandes-Platzgummer A; Andrade PZ; Gimble JM; Wen Y; Boucher S; Vemuri MC; da Silva CL; Cabral JM Biotechnol Bioeng; 2014 Jun; 111(6):1116-27. PubMed ID: 24420557 [TBL] [Abstract][Full Text] [Related]
5. Aggregation of Culture Expanded Human Mesenchymal Stem Cells in Microcarrier-based Bioreactor. Yuan X; Tsai AC; Farrance I; Rowley J; Ma T Biochem Eng J; 2018 Mar; 131():39-46. PubMed ID: 29736144 [TBL] [Abstract][Full Text] [Related]
6. Design and development of a new ambr250® bioreactor vessel for improved cell and gene therapy applications. Rotondi M; Grace N; Betts J; Bargh N; Costariol E; Zoro B; Hewitt CJ; Nienow AW; Rafiq QA Biotechnol Lett; 2021 May; 43(5):1103-1116. PubMed ID: 33528693 [TBL] [Abstract][Full Text] [Related]
7. Scalable ex vivo expansion of human mesenchymal stem/stromal cells in microcarrier-based stirred culture systems. Carmelo JG; Fernandes-Platzgummer A; Cabral JM; da Silva CL Methods Mol Biol; 2015; 1283():147-59. PubMed ID: 25063496 [TBL] [Abstract][Full Text] [Related]
8. Scalable Manufacturing of Human Mesenchymal Stromal Cells in the Vertical-Wheel Bioreactor System: An Experimental and Economic Approach. de Sousa Pinto D; Bandeiras C; de Almeida Fuzeta M; Rodrigues CAV; Jung S; Hashimura Y; Tseng RJ; Milligan W; Lee B; Ferreira FC; Lobato da Silva C; Cabral JMS Biotechnol J; 2019 Aug; 14(8):e1800716. PubMed ID: 30945467 [TBL] [Abstract][Full Text] [Related]
9. Scalable manufacture of therapeutic mesenchymal stromal cell products on customizable microcarriers in vertical wheel bioreactors that improve direct visualization, product harvest, and cost. Haskell A; White BP; Rogers RE; Goebel E; Lopez MG; Syvyk AE; de Oliveira DA; Barreda HA; Benton J; Benavides OR; Dalal S; Bae E; Zhang Y; Maitland K; Nikolov Z; Liu F; Lee RH; Kaunas R; Gregory CA Cytotherapy; 2024 Apr; 26(4):372-382. PubMed ID: 38363250 [TBL] [Abstract][Full Text] [Related]
10. Clinical-Grade Manufacturing of Therapeutic Human Mesenchymal Stem/Stromal Cells in Microcarrier-Based Culture Systems. Fernandes-Platzgummer A; Carmelo JG; da Silva CL; Cabral JM Methods Mol Biol; 2016; 1416():375-88. PubMed ID: 27236684 [TBL] [Abstract][Full Text] [Related]
11. A xeno-free microcarrier-based stirred culture system for the scalable expansion of human mesenchymal stem/stromal cells isolated from bone marrow and adipose tissue. Carmelo JG; Fernandes-Platzgummer A; Diogo MM; da Silva CL; Cabral JM Biotechnol J; 2015 Aug; 10(8):1235-47. PubMed ID: 26136376 [TBL] [Abstract][Full Text] [Related]
12. Bioprocess development for cord blood mesenchymal stromal cells on microcarriers in Vertical-Wheel bioreactors. Roberts EL; Lepage SIM; Koch TG; Kallos MS Biotechnol Bioeng; 2024 Jan; 121(1):192-205. PubMed ID: 37772415 [TBL] [Abstract][Full Text] [Related]
13. Dispersible and Dissolvable Porous Microcarrier Tablets Enable Efficient Large-Scale Human Mesenchymal Stem Cell Expansion. Yan X; Zhang K; Yang Y; Deng D; Lyu C; Xu H; Liu W; Du Y Tissue Eng Part C Methods; 2020 May; 26(5):263-275. PubMed ID: 32268824 [TBL] [Abstract][Full Text] [Related]
14. Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells. Mizukami A; Fernandes-Platzgummer A; Carmelo JG; Swiech K; Covas DT; Cabral JM; da Silva CL Biotechnol J; 2016 Aug; 11(8):1048-59. PubMed ID: 27168373 [TBL] [Abstract][Full Text] [Related]
15. Influence of Microenvironment on Mesenchymal Stem Cell Therapeutic Potency: From Planar Culture to Microcarriers. Tsai AC; Jeske R; Chen X; Yuan X; Li Y Front Bioeng Biotechnol; 2020; 8():640. PubMed ID: 32671039 [TBL] [Abstract][Full Text] [Related]
16. Improved expansion of human bone marrow-derived mesenchymal stem cells in microcarrier-based suspension culture. Yuan Y; Kallos MS; Hunter C; Sen A J Tissue Eng Regen Med; 2014 Mar; 8(3):210-25. PubMed ID: 22689330 [TBL] [Abstract][Full Text] [Related]
17. Computer controlled expansion of equine cord blood mesenchymal stromal cells on microcarriers in 3 L vertical-wheel Roberts EL; Abraham BD; Dang T; Gysel E; Mehrpouyan S; Alizadeh AH; Koch TG; Kallos MS Front Bioeng Biotechnol; 2023; 11():1250077. PubMed ID: 37929186 [TBL] [Abstract][Full Text] [Related]
18. Process development of human multipotent stromal cell microcarrier culture using an automated high-throughput microbioreactor. Rafiq QA; Hanga MP; Heathman TRJ; Coopman K; Nienow AW; Williams DJ; Hewitt CJ Biotechnol Bioeng; 2017 Oct; 114(10):2253-2266. PubMed ID: 28627713 [TBL] [Abstract][Full Text] [Related]
19. Increasing efficiency of human mesenchymal stromal cell culture by optimization of microcarrier concentration and design of medium feed. Chen AK; Chew YK; Tan HY; Reuveny S; Weng Oh SK Cytotherapy; 2015 Feb; 17(2):163-73. PubMed ID: 25304664 [TBL] [Abstract][Full Text] [Related]