BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26289351)

  • 1. Detecting and Attributing the Effects of Climate Change on the Distributions of Snake Species Over the Past 50 Years.
    Wu J
    Environ Manage; 2016 Jan; 57(1):207-19. PubMed ID: 26289351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The distributions of Chinese yak breeds in response to climate change over the past 50 years.
    Wu J
    Anim Sci J; 2016 Jul; 87(7):947-58. PubMed ID: 26470629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can changes in the distributions of resident birds in China over the past 50 years be attributed to climate change?
    Wu J; Zhang G
    Ecol Evol; 2015 Jun; 5(11):2215-33. PubMed ID: 26078858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change will decrease the range size of snake species under negligible protection in the Brazilian Atlantic Forest hotspot.
    Lourenço-de-Moraes R; Lansac-Toha FM; Schwind LTF; Arrieira RL; Rosa RR; Terribile LC; Lemes P; Fernando Rangel T; Diniz-Filho JAF; Bastos RP; Bailly D
    Sci Rep; 2019 Jun; 9(1):8523. PubMed ID: 31189933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential Environmental and Ecological Effects of Global Climate Change on Venomous Terrestrial Species in the Wilderness.
    Needleman RK; Neylan IP; Erickson T
    Wilderness Environ Med; 2018 Jun; 29(2):226-238. PubMed ID: 29395962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refining climate change projections for organisms with low dispersal abilities: a case study of the Caspian whip snake.
    Sahlean TC; Gherghel I; Papeş M; Strugariu A; Zamfirescu ŞR
    PLoS One; 2014; 9(3):e91994. PubMed ID: 24670422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change-related distributional range shifts of venomous snakes: a predictive modelling study of effects on public health and biodiversity.
    Martinez PA; Teixeira IBDF; Siqueira-Silva T; da Silva FFB; Lima LAG; Chaves-Silveira J; Olalla-Tárraga MÅ; Gutiérrez JM; Amado TF
    Lancet Planet Health; 2024 Mar; 8(3):e163-e171. PubMed ID: 38453382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity, natural history, and geographic distribution of snakes in the Caatinga, Northeastern Brazil.
    Guedes TB; Nogueira C; Marques OA
    Zootaxa; 2014 Sep; 3863():1-93. PubMed ID: 25283535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pace of past climate change vs. potential bird distributions and land use in the United States.
    Bateman BL; Pidgeon AM; Radeloff VC; VanDerWal J; Thogmartin WE; Vavrus SJ; Heglund PJ
    Glob Chang Biol; 2016 Mar; 22(3):1130-44. PubMed ID: 26691721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Geographic patterns and ecological factors correlates of snake species richness in China].
    Cai B; Huang Y; Chen YY; Hu JH; Guo XG; Wang YZ
    Dongwuxue Yanjiu; 2012 Aug; 33(4):343-53. PubMed ID: 22855440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the effects of anthropogenic habitat change on savanna snake invasions into African rainforest.
    Freedman AH; Buermann W; Lebreton M; Chirio L; Smith TB
    Conserv Biol; 2009 Feb; 23(1):81-92. PubMed ID: 18778269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate-driven geographic distribution of the desert locust during recession periods: Subspecies' niche differentiation and relative risks under scenarios of climate change.
    Meynard CN; Gay PE; Lecoq M; Foucart A; Piou C; Chapuis MP
    Glob Chang Biol; 2017 Nov; 23(11):4739-4749. PubMed ID: 28464493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate and foraging mode explain interspecific variation in snake metabolic rates.
    Dupoué A; Brischoux F; Lourdais O
    Proc Biol Sci; 2017 Nov; 284(1867):. PubMed ID: 29142118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Snake co-occurrence patterns are best explained by habitat and hypothesized effects of interspecific interactions.
    Steen DA; McClure CJ; Brock JC; Craig Rudolph D; Pierce JB; Lee JR; Jeffrey Humphries W; Gregory BB; Sutton WB; Smith LL; Baxley DL; Stevenson DJ; Guyer C
    J Anim Ecol; 2014 Jan; 83(1):286-95. PubMed ID: 23998642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Could climate change benefit invasive snakes? Modelling the potential distribution of the California Kingsnake in the Canary Islands.
    Piquet JC; Warren DL; Saavedra Bolaños JF; Sánchez Rivero JM; Gallo-Barneto R; Cabrera-Pérez MÁ; Fisher RN; Fisher SR; Rochester CJ; Hinds B; Nogales M; López-Darias M
    J Environ Manage; 2021 Sep; 294():112917. PubMed ID: 34119983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid zones: windows on climate change.
    Taylor SA; Larson EL; Harrison RG
    Trends Ecol Evol; 2015 Jul; 30(7):398-406. PubMed ID: 25982153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature tracking by North Sea benthic invertebrates in response to climate change.
    Hiddink JG; Burrows MT; García Molinos J
    Glob Chang Biol; 2015 Jan; 21(1):117-29. PubMed ID: 25179407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature drives abundance fluctuations, but spatial dynamics is constrained by landscape configuration: Implications for climate-driven range shift in a butterfly.
    Fourcade Y; Ranius T; Öckinger E
    J Anim Ecol; 2017 Oct; 86(6):1339-1351. PubMed ID: 28796909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are there co-occurrence patterns that structure snake communities in Central Brazil?
    França FG; Araújo AF
    Braz J Biol; 2007 Feb; 67(1):33-40. PubMed ID: 17505747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of climate change on the distribution of Sichuan snub-nosed monkeys (Rhinopithecus roxellana) in Shennongjia area, China.
    Luo Z; Zhou S; Yu W; Yu H; Yang J; Tian Y; Zhao M; Wu H
    Am J Primatol; 2015 Feb; 77(2):135-51. PubMed ID: 25224271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.