These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 26289387)
1. Facile graphene transfer directly to target substrates with a reusable metal catalyst. Mafra DL; Ming T; Kong J Nanoscale; 2015 Sep; 7(36):14807-12. PubMed ID: 26289387 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. Wang Y; Zheng Y; Xu X; Dubuisson E; Bao Q; Lu J; Loh KP ACS Nano; 2011 Dec; 5(12):9927-33. PubMed ID: 22034835 [TBL] [Abstract][Full Text] [Related]
3. Metal-assisted exfoliation (MAE): green, roll-to-roll compatible method for transferring graphene to flexible substrates. Zaretski AV; Moetazedi H; Kong C; Sawyer EJ; Savagatrup S; Valle E; O'Connor TF; Printz AD; Lipomi DJ Nanotechnology; 2015 Jan; 26(4):045301. PubMed ID: 25556527 [TBL] [Abstract][Full Text] [Related]
4. Repeated roll-to-roll transfer of two-dimensional materials by electrochemical delamination. Hempel M; Lu AY; Hui F; Kpulun T; Lanza M; Harris G; Palacios T; Kong J Nanoscale; 2018 Mar; 10(12):5522-5531. PubMed ID: 29513332 [TBL] [Abstract][Full Text] [Related]
5. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700 [TBL] [Abstract][Full Text] [Related]
6. Designed CVD growth of graphene via process engineering. Yan K; Fu L; Peng H; Liu Z Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401 [TBL] [Abstract][Full Text] [Related]
7. Controllable chemical vapor deposition growth of few layer graphene for electronic devices. Wei D; Wu B; Guo Y; Yu G; Liu Y Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220 [TBL] [Abstract][Full Text] [Related]
8. Review of chemical vapor deposition of graphene and related applications. Zhang Y; Zhang L; Zhou C Acc Chem Res; 2013 Oct; 46(10):2329-39. PubMed ID: 23480816 [TBL] [Abstract][Full Text] [Related]
9. Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes. Deng B; Hsu PC; Chen G; Chandrashekar BN; Liao L; Ayitimuda Z; Wu J; Guo Y; Lin L; Zhou Y; Aisijiang M; Xie Q; Cui Y; Liu Z; Peng H Nano Lett; 2015 Jun; 15(6):4206-13. PubMed ID: 26020567 [TBL] [Abstract][Full Text] [Related]
10. Uniformity of large-area bilayer graphene grown by chemical vapor deposition. Sheng Y; Rong Y; He Z; Fan Y; Warner JH Nanotechnology; 2015 Oct; 26(39):395601. PubMed ID: 26349521 [TBL] [Abstract][Full Text] [Related]
11. Automatic graphene transfer system for improved material quality and efficiency. Boscá A; Pedrós J; Martínez J; Palacios T; Calle F Sci Rep; 2016 Feb; 6():21676. PubMed ID: 26860260 [TBL] [Abstract][Full Text] [Related]
12. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing. Kang J; Hwang S; Kim JH; Kim MH; Ryu J; Seo SJ; Hong BH; Kim MK; Choi JB ACS Nano; 2012 Jun; 6(6):5360-5. PubMed ID: 22631604 [TBL] [Abstract][Full Text] [Related]
13. Controlling Water Intercalation Is Key to a Direct Graphene Transfer. Verguts K; Schouteden K; Wu CH; Peters L; Vrancken N; Wu X; Li Z; Erkens M; Porret C; Huyghebaert C; Van Haesendonck C; De Gendt S; Brems S ACS Appl Mater Interfaces; 2017 Oct; 9(42):37484-37492. PubMed ID: 28972738 [TBL] [Abstract][Full Text] [Related]
14. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Banszerus L; Schmitz M; Engels S; Dauber J; Oellers M; Haupt F; Watanabe K; Taniguchi T; Beschoten B; Stampfer C Sci Adv; 2015 Jul; 1(6):e1500222. PubMed ID: 26601221 [TBL] [Abstract][Full Text] [Related]
15. Roll-to-Roll Dry Transfer of Large-Scale Graphene. Hong N; Kireev D; Zhao Q; Chen D; Akinwande D; Li W Adv Mater; 2022 Jan; 34(3):e2106615. PubMed ID: 34751484 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of Large Area Graphene for High Performance in Flexible Optoelectronic Devices. Polat EO; Balci O; Kakenov N; Uzlu HB; Kocabas C; Dahiya R Sci Rep; 2015 Nov; 5():16744. PubMed ID: 26578425 [TBL] [Abstract][Full Text] [Related]
17. Mechanical Robustness of Graphene on Flexible Transparent Substrates. Kang MH; Prieto López LO; Chen B; Teo K; Williams JA; Milne WI; Cole MT ACS Appl Mater Interfaces; 2016 Aug; 8(34):22506-15. PubMed ID: 27482734 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method. Jung MW; Myung S; Kim KW; Song W; Jo YY; Lee SS; Lim J; Park CY; An KS Nanotechnology; 2014 Jul; 25(28):285302. PubMed ID: 24971722 [TBL] [Abstract][Full Text] [Related]
19. Processes for non-destructive transfer of graphene: widening the bottleneck for industrial scale production. Zaretski AV; Lipomi DJ Nanoscale; 2015 Jun; 7(22):9963-9. PubMed ID: 25924926 [TBL] [Abstract][Full Text] [Related]
20. Highly uniform monolayer graphene synthesis Jeong H; Hwang WT; Song Y; Kim JK; Kim Y; Hihath J; Chung S; Lee T RSC Adv; 2019 Jul; 9(36):20871-20878. PubMed ID: 35515571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]