BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26289902)

  • 1. Interpreting Injury Mechanisms of Blunt Force Trauma from Butterfly Fracture Formation.
    Reber SL; Simmons T
    J Forensic Sci; 2015 Nov; 60(6):1401-11. PubMed ID: 26289902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing Impact Direction in 3-point Bending of Human Femora: Incomplete Butterfly Fractures and Fracture Surfaces
    Isa MI; Fenton TW; Deland T; Haut RC
    J Forensic Sci; 2018 Jan; 63(1):38-46. PubMed ID: 28436033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating reverse butterfly fractures: An experimental approach and application of fractography.
    Isa MI; Fenton TW; Antonelli LS; Vaughan PE; Wei F
    Forensic Sci Int; 2021 Aug; 325():110899. PubMed ID: 34247140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perimortem or postmortem bone fractures? An experimental study of fracture patterns in deer femora.
    Wheatley BP
    J Forensic Sci; 2008 Jan; 53(1):69-72. PubMed ID: 18005007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental investigation of cranial fracture initiation in blunt human head impacts.
    Isa MI; Fenton TW; Goots AC; Watson EO; Vaughan PE; Wei F
    Forensic Sci Int; 2019 Jul; 300():51-62. PubMed ID: 31075567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Rorschach butterfly, understanding bone biomechanics prior to using nomenclature in bone trauma interpretations.
    L'Abbé EN; Symes SA; Raymond DE; Ubelaker DH
    Forensic Sci Int; 2019 Jun; 299():187-194. PubMed ID: 31035136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sharp and blunt force trauma concealment by thermal alteration in homicides: An in-vitro experiment for methodology and protocol development in forensic anthropological analysis of burnt bones.
    Macoveciuc I; Márquez-Grant N; Horsfall I; Zioupos P
    Forensic Sci Int; 2017 Jun; 275():260-271. PubMed ID: 28414985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights in the analysis of blunt force trauma in human bones. Preliminary results.
    Scheirs S; Malgosa A; Sanchez-Molina D; Ortega-Sánchez M; Velázquez-Ameijide J; Arregui-Dalmases C; Medallo-Muñiz J; Galtés I
    Int J Legal Med; 2017 May; 131(3):867-875. PubMed ID: 27942870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fracture pattern interpretation in the skull: differentiating blunt force from ballistics trauma using concentric fractures.
    Hart GO
    J Forensic Sci; 2005 Nov; 50(6):1276-81. PubMed ID: 16382818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding rib fracture patterns: incomplete and buckle fractures.
    Love JC; Symes SA
    J Forensic Sci; 2004 Nov; 49(6):1153-8. PubMed ID: 15568684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of impact direction and axial loading on the bone fracture pattern.
    Cohen H; Kugel C; May H; Medlej B; Stein D; Slon V; Brosh T; Hershkovitz I
    Forensic Sci Int; 2017 Aug; 277():197-206. PubMed ID: 28651178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A literature review on the Messerer's fracture].
    Geserick G; Krocker K; Wirth I
    Arch Kriminol; 2015; 235(5-6):145-65. PubMed ID: 26427277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new approach to recording nasal fracture in skeletonized individuals.
    Magalhães BM; Mays S; Santos AL
    Int J Paleopathol; 2020 Sep; 30():105-109. PubMed ID: 32615367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and commissioning of an instrumented pneumatic device to simulate blunt- and sharp-force trauma.
    Gaudet JR; Lievers WB; Fairgrieve SI
    Forensic Sci Int; 2020 Feb; 307():110123. PubMed ID: 31951950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating the timing of long bone fractures: correlation between the postmortem interval, bone moisture content, and blunt force trauma fracture characteristics*.
    Wieberg DA; Wescott DJ
    J Forensic Sci; 2008 Sep; 53(5):1028-34. PubMed ID: 18624891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Fractography of the long tubular bones of the lower extremities in trauma by blunt objects].
    Kriukov VN; Bakhmet'ev VI
    Sud Med Ekspert; 1991; 34(2):18-21. PubMed ID: 1882395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact velocity and bone fracture pattern: Forensic perspective.
    Cohen H; Kugel C; May H; Medlej B; Stein D; Slon V; Hershkovitz I; Brosh T
    Forensic Sci Int; 2016 Sep; 266():54-62. PubMed ID: 27220089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of input energy and impactor shape on cranial fracture patterns.
    Isa MI; Fenton TW; Goots AC; Watson EO; Vaughan PE; Wei F
    Forensic Sci Int; 2023 Nov; 352():111859. PubMed ID: 37857182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Examination of the Transition of Fracture Characteristics in Long Bones from Fresh to Dry in Central Florida: Evaluating the Timing of Injury.
    Green AE; Schultz JJ
    J Forensic Sci; 2017 Mar; 62(2):282-291. PubMed ID: 27864956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of traumatic injury in burned cranial bone: an experimental approach.
    Pope EJ; Smith OC
    J Forensic Sci; 2004 May; 49(3):431-40. PubMed ID: 15171155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.