These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 26290182)
1. Evolutionary transitions in the Asteraceae coincide with marked shifts in transposable element abundance. Staton SE; Burke JM BMC Genomics; 2015 Aug; 16(1):623. PubMed ID: 26290182 [TBL] [Abstract][Full Text] [Related]
2. Diversity and evolution of transposable elements in the plant-parasitic nematodes. Dayi M BMC Genomics; 2024 May; 25(1):511. PubMed ID: 38783171 [TBL] [Abstract][Full Text] [Related]
3. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Chalopin D; Naville M; Plard F; Galiana D; Volff JN Genome Biol Evol; 2015 Jan; 7(2):567-80. PubMed ID: 25577199 [TBL] [Abstract][Full Text] [Related]
4. Species-specific chromatin landscape determines how transposable elements shape genome evolution. Huang Y; Shukla H; Lee YCG Elife; 2022 Aug; 11():. PubMed ID: 35997258 [TBL] [Abstract][Full Text] [Related]
5. Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis. Zedek F; Smerda J; Smarda P; Bureš P BMC Plant Biol; 2010 Nov; 10():265. PubMed ID: 21118487 [TBL] [Abstract][Full Text] [Related]
7. Differential Conservation and Loss of Chicken Repeat 1 (CR1) Retrotransposons in Squamates Reveal Lineage-Specific Genome Dynamics Across Reptiles. Gable SM; Bushroe NA; Mendez JM; Wilson A; Pinto BJ; Gamble T; Tollis M Genome Biol Evol; 2024 Aug; 16(8):. PubMed ID: 39031594 [TBL] [Abstract][Full Text] [Related]
8. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses. Santos FC; Guyot R; do Valle CB; Chiari L; Techio VH; Heslop-Harrison P; Vanzela AL Chromosome Res; 2015 Sep; 23(3):571-82. PubMed ID: 26386563 [TBL] [Abstract][Full Text] [Related]
9. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family. Garcia S; Panero JL; Siroky J; Kovarik A BMC Plant Biol; 2010 Aug; 10():176. PubMed ID: 20712858 [TBL] [Abstract][Full Text] [Related]
10. Transposable Elements Shape the Genome Diversity and the Evolution of Noctuidae Species. Zhang C; Wang L; Dou L; Yue B; Xing J; Li J Genes (Basel); 2023 Jun; 14(6):. PubMed ID: 37372423 [TBL] [Abstract][Full Text] [Related]
11. Methods for accurate quantification of LTR-retrotransposon copy number using short-read sequence data: a case study in Sorghum. Ramachandran D; Hawkins JS Mol Genet Genomics; 2016 Oct; 291(5):1871-83. PubMed ID: 27295958 [TBL] [Abstract][Full Text] [Related]
12. Evolutionary Dynamics of Transposable Elements Following a Shared Polyploidization Event in the Tribe Andropogoneae. Ramachandran D; McKain MR; Kellogg EA; Hawkins JS G3 (Bethesda); 2020 Dec; 10(12):4387-4398. PubMed ID: 32988994 [TBL] [Abstract][Full Text] [Related]
13. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Hawkins JS; Kim H; Nason JD; Wing RA; Wendel JF Genome Res; 2006 Oct; 16(10):1252-61. PubMed ID: 16954538 [TBL] [Abstract][Full Text] [Related]
14. Dating the Species Network: Allopolyploidy and Repetitive DNA Evolution in American Daisies (Melampodium sect. Melampodium, Asteraceae). Mccann J; Jang TS; Macas J; Schneeweiss GM; Matzke NJ; Novák P; Stuessy TF; Villaseñor JL; Weiss-Schneeweiss H Syst Biol; 2018 Nov; 67(6):1010-1024. PubMed ID: 29562303 [TBL] [Abstract][Full Text] [Related]
15. The genomes of Dahlia pinnata, Cosmos bipinnatus, and Bidens alba in tribe Coreopsideae provide insights into polyploid evolution and inulin biosynthesis. Wang H; Xu D; Jiang F; Wang S; Wang A; Liu H; Lei L; Qian W; Fan W Gigascience; 2024 Jan; 13():. PubMed ID: 38869151 [TBL] [Abstract][Full Text] [Related]
16. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. Staton SE; Bakken BH; Blackman BK; Chapman MA; Kane NC; Tang S; Ungerer MC; Knapp SJ; Rieseberg LH; Burke JM Plant J; 2012 Oct; 72(1):142-53. PubMed ID: 22691070 [TBL] [Abstract][Full Text] [Related]
17. Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus. Auvinet J; Graça P; Belkadi L; Petit L; Bonnivard E; Dettaï A; Detrich WH; Ozouf-Costaz C; Higuet D BMC Genomics; 2018 May; 19(1):339. PubMed ID: 29739320 [TBL] [Abstract][Full Text] [Related]
18. Long Terminal Repeat Retrotransposon Content in Eight Diploid Sunflower Species Inferred from Next-Generation Sequence Data. Tetreault HM; Ungerer MC G3 (Bethesda); 2016 Aug; 6(8):2299-308. PubMed ID: 27233667 [TBL] [Abstract][Full Text] [Related]
19. Proliferation of Ty3/gypsy-like retrotransposons in hybrid sunflower taxa inferred from phylogenetic data. Ungerer MC; Strakosh SC; Stimpson KM BMC Biol; 2009 Jul; 7():40. PubMed ID: 19594956 [TBL] [Abstract][Full Text] [Related]
20. Genome Size Evolution Mediated by Gypsy Retrotransposons in Brassicaceae. Zhang SJ; Liu L; Yang R; Wang X Genomics Proteomics Bioinformatics; 2020 Jun; 18(3):321-332. PubMed ID: 33137519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]