These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 26290261)
1. Megakaryocytic hyperplasia in myeloproliferative neoplasms is driven by disordered proliferative, apoptotic and epigenetic mechanisms. Malherbe JA; Fuller KA; Arshad A; Nangalia J; Romeo G; Hall SL; Meehan KS; Guo B; Howman R; Erber WN J Clin Pathol; 2016 Feb; 69(2):155-63. PubMed ID: 26290261 [TBL] [Abstract][Full Text] [Related]
2. Anti-apoptotic pathways in bone marrow and megakaryocytes in myeloproliferative neoplasia. Koopmans SM; Schouten HC; van Marion AM Pathobiology; 2014; 81(2):60-8. PubMed ID: 24280934 [TBL] [Abstract][Full Text] [Related]
3. Changing concepts of diagnostic criteria of myeloproliferative disorders and the molecular etiology and classification of myeloproliferative neoplasms: from Dameshek 1950 to Vainchenker 2005 and beyond. Michiels JJ; Berneman Z; Schroyens W; De Raeve H Acta Haematol; 2015; 133(1):36-51. PubMed ID: 25116092 [TBL] [Abstract][Full Text] [Related]
4. Activation of JAK/STAT Signaling in Megakaryocytes Sustains Myeloproliferation Woods B; Chen W; Chiu S; Marinaccio C; Fu C; Gu L; Bulic M; Yang Q; Zouak A; Jia S; Suraneni PK; Xu K; Levine RL; Crispino JD; Wen QJ Clin Cancer Res; 2019 Oct; 25(19):5901-5912. PubMed ID: 31217200 [TBL] [Abstract][Full Text] [Related]
5. CAL2 Immunohistochemical Staining Accurately Identifies CALR Mutations in Myeloproliferative Neoplasms. Nomani L; Bodo J; Zhao X; Durkin L; Loghavi S; Hsi ED Am J Clin Pathol; 2016 Oct; 146(4):431-8. PubMed ID: 27686170 [TBL] [Abstract][Full Text] [Related]
6. Dysregulation of the intrinsic apoptotic pathway mediates megakaryocytic hyperplasia in myeloproliferative neoplasms. Malherbe JA; Fuller KA; Mirzai B; Kavanagh S; So CC; Ip HW; Guo BB; Forsyth C; Howman R; Erber WN J Clin Pathol; 2016 Apr; 69(11):1017-24. PubMed ID: 27060176 [TBL] [Abstract][Full Text] [Related]
10. CALR, JAK2, and MPL mutation profiles in patients with four different subtypes of myeloproliferative neoplasms: primary myelofibrosis, essential thrombocythemia, polycythemia vera, and myeloproliferative neoplasm, unclassifiable. Kim SY; Im K; Park SN; Kwon J; Kim JA; Lee DS Am J Clin Pathol; 2015 May; 143(5):635-44. PubMed ID: 25873496 [TBL] [Abstract][Full Text] [Related]
11. WHO-histological criteria for myeloproliferative neoplasms: reproducibility, diagnostic accuracy and correlation with gene mutations and clinical outcomes. Alvarez-Larrán A; Ancochea A; García M; Climent F; García-Pallarols F; Angona A; Senín A; Barranco C; Martínez-Avilés L; Serrano S; Bellosillo B; Besses C Br J Haematol; 2014 Sep; 166(6):911-9. PubMed ID: 24957246 [TBL] [Abstract][Full Text] [Related]
12. pSTAT3/pSTAT5 Signaling Patterns in Molecularly Defined Subsets of Myeloproliferative Neoplasms. Sakr H; Clark Schneider K; Murugesan G; Bodo J; Hsi ED; Cook JR Appl Immunohistochem Mol Morphol; 2018 Feb; 26(2):147-152. PubMed ID: 27258562 [TBL] [Abstract][Full Text] [Related]
13. CALR frameshift mutations in MPN patient-derived iPSCs accelerate maturation of megakaryocytes. Olschok K; Han L; de Toledo MAS; Böhnke J; Graßhoff M; Costa IG; Theocharides A; Maurer A; Schüler HM; Buhl EM; Pannen K; Baumeister J; Kalmer M; Gupta S; Boor P; Gezer D; Brümmendorf TH; Zenke M; Chatain N; Koschmieder S Stem Cell Reports; 2021 Nov; 16(11):2768-2783. PubMed ID: 34678208 [TBL] [Abstract][Full Text] [Related]
14. Validation of a molecular diagnostic assay for CALR exon 9 indels in myeloproliferative neoplasms: identification of coexisting JAK2 and CALR mutations and a novel 9 bp deletion in CALR. Murugesan G; Guenther-Johnson J; Mularo F; Cook JR; Daly TM Int J Lab Hematol; 2016 Jun; 38(3):284-97. PubMed ID: 27018326 [TBL] [Abstract][Full Text] [Related]
15. Neutrophil-specific expression of JAK2-V617F or CALRmut induces distinct inflammatory profiles in myeloproliferative neoplasia. Haage TR; Charakopoulos E; Bhuria V; Baldauf CK; Korthals M; Handschuh J; Müller P; Li J; Harit K; Nishanth G; Frey S; Böttcher M; Fischer KD; Dudeck J; Dudeck A; Lipka DB; Schraven B; Green AR; Müller AJ; Mougiakakos D; Fischer T J Hematol Oncol; 2024 Jun; 17(1):43. PubMed ID: 38853260 [TBL] [Abstract][Full Text] [Related]
16. Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion. Han L; Schubert C; Köhler J; Schemionek M; Isfort S; Brümmendorf TH; Koschmieder S; Chatain N J Hematol Oncol; 2016 May; 9(1):45. PubMed ID: 27177927 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous screening for JAK2 and calreticulin gene mutations in myeloproliferative neoplasms with high resolution melting. Matsumoto N; Mori S; Hasegawa H; Sasaki D; Mori H; Tsuruda K; Imanishi D; Imaizumi Y; Hata T; Kaku N; Kosai K; Uno N; Miyazaki Y; Yanagihara K Clin Chim Acta; 2016 Nov; 462():166-173. PubMed ID: 27693531 [TBL] [Abstract][Full Text] [Related]
19. TERT rs2736100 A>C SNP and JAK2 46/1 haplotype significantly contribute to the occurrence of JAK2 V617F and CALR mutated myeloproliferative neoplasms - a multicentric study on 529 patients. Trifa AP; Bănescu C; Tevet M; Bojan A; Dima D; Urian L; Török-Vistai T; Popov VM; Zdrenghea M; Petrov L; Vasilache A; Murat M; Georgescu D; Popescu M; Pătrinoiu O; Balea M; Costache R; Coleș E; Șaguna C; Berbec N; Vlădăreanu AM; Mihăilă RG; Bumbea H; Cucuianu A; Popp RA Br J Haematol; 2016 Jul; 174(2):218-26. PubMed ID: 27061303 [TBL] [Abstract][Full Text] [Related]
20. Genetic-pathologic characterization of myeloproliferative neoplasms. Kim Y; Park J; Jo I; Lee GD; Kim J; Kwon A; Choi H; Jang W; Chae H; Han K; Eom KS; Cho BS; Lee SE; Yang J; Shin SH; Kim H; Ko YH; Park H; Jin JY; Lee S; Jekarl DW; Yahng SA; Kim M Exp Mol Med; 2016 Jul; 48(7):e247. PubMed ID: 27444979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]