BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 26290333)

  • 21. Epigenetic factors in the regulation of prospermatogonia and spermatogonial stem cells.
    Tseng YT; Liao HF; Yu CY; Mo CF; Lin SP
    Reproduction; 2015 Sep; 150(3):R77-91. PubMed ID: 26116003
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell-autonomous requirement for mammalian target of rapamycin (Mtor) in spermatogonial proliferation and differentiation in the mouse†.
    Serra ND; Velte EK; Niedenberger BA; Kirsanov O; Geyer CB
    Biol Reprod; 2017 Apr; 96(4):816-828. PubMed ID: 28379293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells.
    Sada A; Suzuki A; Suzuki H; Saga Y
    Science; 2009 Sep; 325(5946):1394-8. PubMed ID: 19745153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The histone demethylase KDM1A is essential for the maintenance and differentiation of spermatogonial stem cells and progenitors.
    Lambrot R; Lafleur C; Kimmins S
    FASEB J; 2015 Nov; 29(11):4402-16. PubMed ID: 26243864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Commitment of fetal male germ cells to spermatogonial stem cells during mouse embryonic development.
    Ohta H; Wakayama T; Nishimune Y
    Biol Reprod; 2004 May; 70(5):1286-91. PubMed ID: 14695910
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of GFRα-1-positive and GFRα-1-negative spermatogonia in neonatal pig testis.
    Lee KH; Lee WY; Kim JH; Yoon MJ; Kim NH; Kim JH; Uhm SJ; Kim DH; Chung HJ; Song H
    Reprod Domest Anim; 2013 Dec; 48(6):954-60. PubMed ID: 23808407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Separation of somatic and germ cells is required to establish primate spermatogonial cultures.
    Langenstroth D; Kossack N; Westernströer B; Wistuba J; Behr R; Gromoll J; Schlatt S
    Hum Reprod; 2014 Sep; 29(9):2018-31. PubMed ID: 24963164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single cell RNA-sequencing identified Dec2 as a suppressive factor for spermatogonial differentiation by inhibiting Sohlh1 expression.
    Makino Y; Jensen NH; Yokota N; Rossner MJ; Akiyama H; Shirahige K; Okada Y
    Sci Rep; 2019 Apr; 9(1):6063. PubMed ID: 30988352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcription and imprinting dynamics in developing postnatal male germline stem cells.
    Hammoud SS; Low DH; Yi C; Lee CL; Oatley JM; Payne CJ; Carrell DT; Guccione E; Cairns BR
    Genes Dev; 2015 Nov; 29(21):2312-24. PubMed ID: 26545815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of spermatogonial stem cell compartment in the mouse testis.
    Iwamori N
    Fukuoka Igaku Zasshi; 2014 Jan; 105(1):1-10. PubMed ID: 24800527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pluripotency of a single spermatogonial stem cell in mice.
    Kanatsu-Shinohara M; Lee J; Inoue K; Ogonuki N; Miki H; Toyokuni S; Ikawa M; Nakamura T; Ogura A; Shinohara T
    Biol Reprod; 2008 Apr; 78(4):681-7. PubMed ID: 18199882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leukemia inhibitory factor enhances formation of germ cell colonies in neonatal mouse testis culture.
    Kanatsu-Shinohara M; Inoue K; Ogonuki N; Miki H; Yoshida S; Toyokuni S; Lee J; Ogura A; Shinohara T
    Biol Reprod; 2007 Jan; 76(1):55-62. PubMed ID: 17021343
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Essential role of Plzf in maintenance of spermatogonial stem cells.
    Costoya JA; Hobbs RM; Barna M; Cattoretti G; Manova K; Sukhwani M; Orwig KE; Wolgemuth DJ; Pandolfi PP
    Nat Genet; 2004 Jun; 36(6):653-9. PubMed ID: 15156143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RBPJ in mouse Sertoli cells is required for proper regulation of the testis stem cell niche.
    Garcia TX; Farmaha JK; Kow S; Hofmann MC
    Development; 2014 Dec; 141(23):4468-78. PubMed ID: 25406395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The DNA methylation profile of human spermatogonia at single-cell- and single-allele-resolution refutes its role in spermatogonial stem cell function and germ cell differentiation.
    Fend-Guella DL; von Kopylow K; Spiess AN; Schulze W; Salzbrunn A; Diederich S; El Hajj N; Haaf T; Zechner U; Linke M
    Mol Hum Reprod; 2019 Jun; 25(6):283-294. PubMed ID: 30892608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage.
    Yoshida S; Sukeno M; Nakagawa T; Ohbo K; Nagamatsu G; Suda T; Nabeshima Y
    Development; 2006 Apr; 133(8):1495-505. PubMed ID: 16540512
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alteration of protein prenylation promotes spermatogonial differentiation and exhausts spermatogonial stem cells in newborn mice.
    Diao F; Jiang C; Wang XX; Zhu RL; Wang Q; Yao B; Li CJ
    Sci Rep; 2016 Jul; 6():28917. PubMed ID: 27374985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sohlh1 is essential for spermatogonial differentiation.
    Ballow D; Meistrich ML; Matzuk M; Rajkovic A
    Dev Biol; 2006 Jun; 294(1):161-7. PubMed ID: 16564520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression and intracellular localization of Nanos2-homologue protein in primordial germ cells and spermatogonial stem cells.
    Pandey V; Tripathi A; Dubey PK
    Zygote; 2019 Apr; 27(2):82-88. PubMed ID: 30888312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Function and transcriptomic dynamics of Sertoli cells during prospermatogonia development in mouse testis.
    Yan RG; Li BY; Yang QE
    Reprod Biol; 2020 Dec; 20(4):525-535. PubMed ID: 32952085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.