BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 26290371)

  • 1. Architecture of the human renal inner medulla and functional implications.
    Wei G; Rosen S; Dantzler WH; Pannabecker TL
    Am J Physiol Renal Physiol; 2015 Oct; 309(7):F627-37. PubMed ID: 26290371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Architecture of vasa recta in the renal inner medulla of the desert rodent Dipodomys merriami: potential impact on the urine concentrating mechanism.
    Issaian T; Urity VB; Dantzler WH; Pannabecker TL
    Am J Physiol Regul Integr Comp Physiol; 2012 Oct; 303(7):R748-56. PubMed ID: 22914749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional lateral and vertical relationships of inner medullary loops of Henle and collecting ducts.
    Pannabecker TL; Dantzler WH
    Am J Physiol Renal Physiol; 2004 Oct; 287(4):F767-74. PubMed ID: 15187004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional architecture of inner medullary vasa recta.
    Pannabecker TL; Dantzler WH
    Am J Physiol Renal Physiol; 2006 Jun; 290(6):F1355-66. PubMed ID: 16380456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axial compartmentation of descending and ascending thin limbs of Henle's loops.
    Westrick KY; Serack B; Dantzler WH; Pannabecker TL
    Am J Physiol Renal Physiol; 2013 Feb; 304(3):F308-16. PubMed ID: 23195680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Urine concentrating mechanism in the inner medulla of the mammalian kidney: role of three-dimensional architecture.
    Dantzler WH; Pannabecker TL; Layton AT; Layton HE
    Acta Physiol (Oxf); 2011 Jul; 202(3):361-78. PubMed ID: 21054810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of functional reconstructions reveals lateral and axial zonation in the renal inner medulla.
    Pannabecker TL; Henderson CS; Dantzler WH
    Am J Physiol Renal Physiol; 2008 Jun; 294(6):F1306-14. PubMed ID: 18417543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla.
    Pannabecker TL; Dantzler WH; Layton HE; Layton AT
    Am J Physiol Renal Physiol; 2008 Nov; 295(5):F1271-85. PubMed ID: 18495796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Architecture of inner medullary descending and ascending vasa recta: pathways for countercurrent exchange.
    Yuan J; Pannabecker TL
    Am J Physiol Renal Physiol; 2010 Jul; 299(1):F265-72. PubMed ID: 20392798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional architecture of collecting ducts, loops of Henle, and blood vessels in the renal papilla.
    Pannabecker TL; Dantzler WH
    Am J Physiol Renal Physiol; 2007 Sep; 293(3):F696-704. PubMed ID: 17609288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Architecture of interstitial nodal spaces in the rodent renal inner medulla.
    Gilbert RL; Pannabecker TL
    Am J Physiol Renal Physiol; 2013 Sep; 305(5):F745-52. PubMed ID: 23825077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional functional reconstruction of inner medullary thin limbs of Henle's loop.
    Pannabecker TL; Abbott DE; Dantzler WH
    Am J Physiol Renal Physiol; 2004 Jan; 286(1):F38-45. PubMed ID: 14519595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aquaporin-1 is not expressed in descending thin limbs of short-loop nephrons.
    Zhai XY; Fenton RA; Andreasen A; Thomsen JS; Christensen EI
    J Am Soc Nephrol; 2007 Nov; 18(11):2937-44. PubMed ID: 17942963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architecture of kangaroo rat inner medulla: segmentation of descending thin limb of Henle's loop.
    Urity VB; Issaian T; Braun EJ; Dantzler WH; Pannabecker TL
    Am J Physiol Regul Integr Comp Physiol; 2012 Mar; 302(6):R720-6. PubMed ID: 22237592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional implications of the three-dimensional architecture of the rat renal inner medulla.
    Layton AT; Pannabecker TL; Dantzler WH; Layton HE
    Am J Physiol Renal Physiol; 2010 Apr; 298(4):F973-87. PubMed ID: 20053796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aquaporin-1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney.
    Nielsen S; Pallone T; Smith BL; Christensen EI; Agre P; Maunsbach AB
    Am J Physiol; 1995 Jun; 268(6 Pt 2):F1023-37. PubMed ID: 7541952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Descending thin limb of the intermediate loop expresses both aquaporin 1 and urea transporter A2 in the mouse kidney.
    Kim WY; Lee HW; Han KH; Nam SA; Choi A; Kim YK; Kim J
    Histochem Cell Biol; 2016 Jul; 146(1):1-12. PubMed ID: 27091563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. II. Parameter sensitivity and tubular inhomogeneity.
    Layton AT; Layton HE
    Am J Physiol Renal Physiol; 2005 Dec; 289(6):F1367-81. PubMed ID: 15914775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of SLC4A11 protein in mouse and rat medulla: a candidate transporter involved in outer medullary ammonia recycling.
    Gee MT; Kurtz I; Pannabecker TL
    Physiol Rep; 2019 May; 7(10):e14089. PubMed ID: 31124301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-compartment model of inner medullary vasculature supports dual modes of vasopressin-regulated inner medullary blood flow.
    Kim J; Pannabecker TL
    Am J Physiol Renal Physiol; 2010 Jul; 299(1):F273-9. PubMed ID: 20392799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.